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Lecture 15:
Coordinate Descent
(continued)

- How to solve non-smooth optimization like Lasso?
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Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize,, £ (w) + A||lw]|; = || Xw — yllg + 1w,

« the goal is to derive an analytical rule for updating wj(t)’s

« let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w,
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* hence, the coordinate descent update boils down to

wl(t) < arg min ||X[: Alw, — (y - X[:,2: d]w(t 1) H + Alwy|
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How do we find the minima?

¢ for convex differentiable functions, the minimum is achieved at points
where gradient is zero
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e for convex non-differentiable functions, the minimum is achieved at
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Finding the minima for (aw; — b)* + A|w, | = Fu)

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
| —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero
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How do we find the minimizer?

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0

e case 1:
e 2a(aw; — b) + 1 = 0 for some w; > 0
 this happens when
—A+ 2ab
Wl — > O
2a?
* hence, ]
1 a 2a?
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* case 2:
e 2a(aw; — b) — A = 0 for some w; < 0
e this happens when

A+ 2ab

w = ——<0( \j
a2
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Wl A Z + 2a2’ minimum
ifA < —2ab
e case 3:

e 0 € [-2ab— A, —2ab + /]
eandw; =0

* hence,
wl(t) < 0,

if —A <2ab < A

minimum



Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > \
w 0 for — A< 2ab< A
by 2 for A < —2ab

X[, 1 (y = X[: .2 : dlw_y)
VXL 17X]: 1]
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where a = \/X[: A17X[: ,1],and b =
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When does coordinate descent work?

» Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

A 7
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e when coordinate descent has stopped, that means

S =0forallj € {1,...,d}

ox;

e this implies that the gradient V. f(x) = 0, which happens only
at minimum




When does coordinate descent work?

e Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck
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Flxp, %) = Bx; + 4%, + 12 + A x; — x,
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When does coordinate descent work?

* then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-ddifferentiable convex function but has a

structure of f(x) = g(x) + 2 hi(x;) , with differentiable convex

function g(x) and coordinate-wise non-differentiable convex functions
hi(x;)’s, then coordinate descent converges to the global minima
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Questions?



Support Vector Machines
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How do we choose the best linear classifier?

* informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

* for linearly separable datasets, maximum margin classifier is a natural
choice

* large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points
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Geometric margin
given a set of training examples {(x;, y)}i_, %6 {-1+1?

and a linear classifier (w, b) € R? x R

such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wlx+b
which is the set of points that are orthogonal to w w@shiﬁ of b

we define functional margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y;) to the
decision boundary, which is

(w'x; + D) i
Yi =i i -
Iwll, -

(The proof is on the next slide)

{x|wix+b=0)



Geometric margin

« the distance y; from a hyperplane {x | wlix+b= 0} to a point x; can be
computed geometrically as follows
e We know that if you move from Xx;

in the negative direction of w by length ¥;,
you arrive at the line, which can be written as

e so0 we can plug the point in the formula:

wT<xl-— d yi>+b =0 )

o lwll,
which is
T IIWII‘%/ x| wlx+b=0)
w xl-—| v;i+b =20
and hence JWHE
wlix, +b
Yi = —0 1
Iwll,

and we multiply it by y; so that for negative samples we use the opposite
direction of —w instead of w



Geometric margin

* the margin with respect to a set
is defined as

n
Yy = mlln?’i
1=

e among all linear classifiers,
we would like to find one that has
the maximum margin

x|wix+b=0)



Maximum margin classifier

e we propose the following optimization problem: xSevtes 0{“ °P€T"°] Sluting,
. C W5 ~¢{Q cwWS Lt r*)}
(X) Mmaximiz WGW’bE[@’YER v (maximize the margin) ceg!
) T~ yi(WTXi + D) : ]
subject to >y forallie€{l,...,n} (s.t. y is a lower bound on
25— Wl the margin)

« if we fix (w, b), the optimal solution of the optimization is the margin
frecEan of o Worttars.
oA| Lodesel L

cngl. |
e note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,£b) does note
change either the feasibility or the objective value, hence the following reparametrization is valid

¢ the above optimization looks difficult, so we transform it using reparametrization

» together with (w, b), this finds the classifier with the maximum margin

(:)QR) maximize,,crd per yeR ¥ }/*'
(w'x; + b) . +
subject to Y ’ >y foralli € {1,...,n} - +
Il e +

J wlly =— - - *
/4

e Because of scale invariance, the optimal solution does not change, - -
as the solutions to the original problem did not depend on ||w/||,,
and only depends on the direction of w




'C—)é@ maXimizeweRd,beR,yeR /4

. yiw'x; + b) .
subject to >y foralli € {1,...,n}
Il
Iwll, =—
y )
* the above optimization still looks difficult, but can be transformed into T"—‘—(f,;'lr
. S
< CweRd,beR ) maximize the margin
i wll, ( o)
. yiw!x; + b) ,
subject to > foralli € {1,...,n}(now ” plays the role of

W Wil2
H/l+ 2 M 2 a lower bound

on the margin)
which simplifies to

() minimize,,erd per ||w||% Z— Quodicte OV3ectTve.

subject to yl-(wal-+b) >1 forallie {1,....n} <— Vcwr Cavstrcsiel

* this is a quadratic program with linear constraints, which can be easily solved

once the optimal solution is found, the margin of that classifier (w, b) is

||W’T|2



What if the data is not separable?

. We cheated a little in the sense that the reparametrization of  ||w||, = —is

possible only if the the margins are positive,
i.e. the data is linearly separable with a positive margin

e otherwise, there is no feasible solution® C*ﬁf)
* the examples at the margin are called@pgort vecto@

{x|wlx+b =0}
minimize,,criper W3

subjectto y,(wlx;+b)>1 forallie {1,...,n}
1
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Two Issues

* max-margin formulation we proposed is sensitive to outliers
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* it does not generalize to non-separable datasets



What if the data is not separable?
Lelwla b =0) * we introduce@lack’so that

some points can violate the
margin condition

ywlx,+b) > 1
"

™
I

x|wix+b=+1)

- x|wix+b=-1)
e this gives a new optimization problem wi;[1h some positive constant c € R
minimize, croper ccrn IWIZ+e 2,6 = c 15,
[ i=l
subject to yi(wal- +b)>1-¢& foralie {1,...,n} <— rebrel Sk sbok

& >0 forallie {1,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations




Support Vector Machine (v

e for the optimization problem

n
minimize,,crd peRr R ||w||% +c Z E;
i=1
subjectto y,(wlx;+b)>1—¢ forallie€ {1,...,n}
& >0 forallie {1,...,n}

notice that at optimal solution, &;'s satisfy
&, = 0 if margin is big enough yl-(wa,- +b)>1,0r
— T . . L ) T
e &, =1—y,(w"x;+ b), if the example is within the margin y;,(w”* x; + b) < 1

e SO one can write
e &, =max{0,1 —y,(w"x;+ b)}, which gives

1 n
minimize,,crd per —||w||% + Z max{0,1 — y,(w’x; + b)}
c

i=1



Sub-gradient descent for SVM

SVM is the solution of

minimize,verd per ||w||2 + Z max{0,1 — y(w'x, + b))

i=1
as it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
awf(wal- +Db,y,) = I{yl-(wal- + D) < 1}(=yx;)
and apply

>
WD <Zl{yl((w(t))Tx +5D) < 1) (=yx) + —w(’)>

nll

pED O Zl{yi((w(t))Txi +b®) < DIH-y)
i=1



Questions?



