Lecture 15: Coordinate Descent (continued)

- How to solve non-smooth optimization like Lasso?

$$\hat{w}_{\text{Lasso}} = \arg\min_{w \in \mathbb{R}^d} \ \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_1$$

Coordinate descent for Lasso

- let us apply coordinate descent on Lasso, which minimizes $\min_{w} \mathcal{L}(w) + \lambda \|w\|_1 = \|\mathbf{X}w \mathbf{y}\|_2^2 + \lambda \|w\|_1$
- the goal is to derive an **analytical rule** for updating $w_j^{(t)}$'s
- let us first write the update rule explicitly for $w_1^{(t)}$
 - first step is to write the loss in terms of w_1

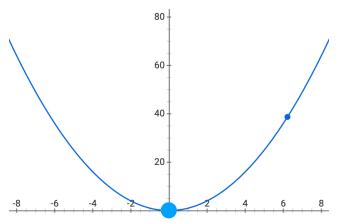
$$\|\mathbf{X}[:,1]w_1 - (\mathbf{y} - \mathbf{X}[:,2:d]w_{2:d})\|_2^2 + \lambda(\|w_1\| + \|w_{2:d}\|_1)$$

hence, the coordinate descent update boils down to

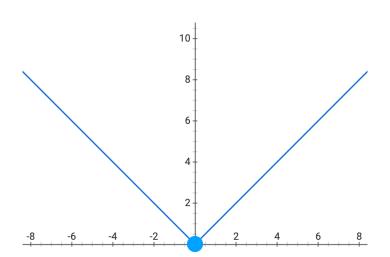
$$w_1^{(t)} \leftarrow \arg\min_{w_1} \left\| \mathbf{X}[:,1]w_1 - \left(\mathbf{y} - \mathbf{X}[:,2:d]w_{2:d}^{(t-1)}\right) \right\|_2^2 + \lambda |w_1|$$

How do we find the minima?

 for convex differentiable functions, the minimum is achieved at points where gradient is zero



• for **convex non-differentiable** functions, the minimum is achieved at points where sub-gradient includes zero



• the minimizer $w_1^{(t)}$ is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

• the minimizer $\boldsymbol{w}_1^{(t)}$ is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

• the minimizer $\boldsymbol{w}_1^{(t)}$ is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

 considering all three cases, we get the following update rule by setting the sub-gradient to zero

$$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \le 2ab \le \lambda \iff \frac{-\lambda}{2a^2} \le \frac{b}{a} \le \frac{\lambda}{2a^2} \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$

How do we find the minimizer?

• the minimizer $w_{\rm 1}^{(t)}$ is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

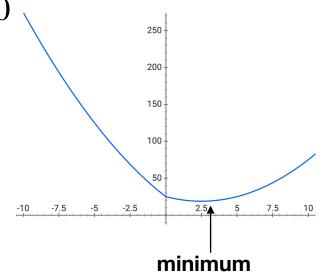
- case 1:
 - $2a(aw_1 b) + \lambda = 0$ for some $w_1 > 0$
 - this happens when

his happens when
$$w_1 = \frac{-\lambda + 2ab}{2a^2} > 0$$

hence,

$$w_1^{(t)} \leftarrow \frac{b}{a} - \frac{\lambda}{2a^2},$$

if
$$\lambda < 2ab$$



- case 2:
 - $2a(aw_1 b) \lambda = 0$ for some $w_1 < 0$
 - this happens when

$$w_1 = \frac{\lambda + 2ab}{2a^2} < 0$$

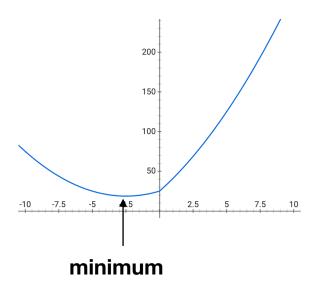
hence,

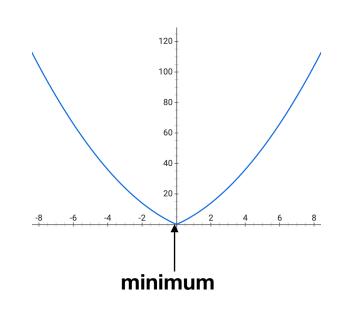
$$w_1^{(t)} \leftarrow \frac{b}{a} + \frac{\lambda}{2a^2},$$

if
$$\lambda < -2ab$$

- case 3:
 - $0 \in [-2ab \lambda, -2ab + \lambda]$
 - and $w_1 = 0$
 - hence, $w_1^{(t)} \leftarrow 0$,

if
$$-\lambda \le 2ab \le \lambda$$





Coordinate descent on Lasso

minimum

10

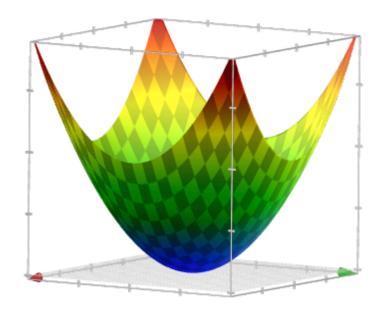
 considering all three cases, we get the following update rule by setting the sub-gradient to zero

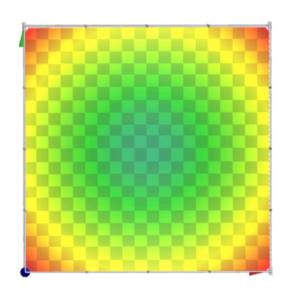
$$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \leq 2ab \leq \lambda \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$

• where
$$a = \sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}$$
, and $b = \frac{\mathbf{X}[:,1]^T (\mathbf{y} - \mathbf{X}[:,2:d] w_{-1})}{\sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}}$

When does coordinate descent work?

• Consider minimizing a **differentiable convex** function f(x), then coordinate descent converges to the global minima

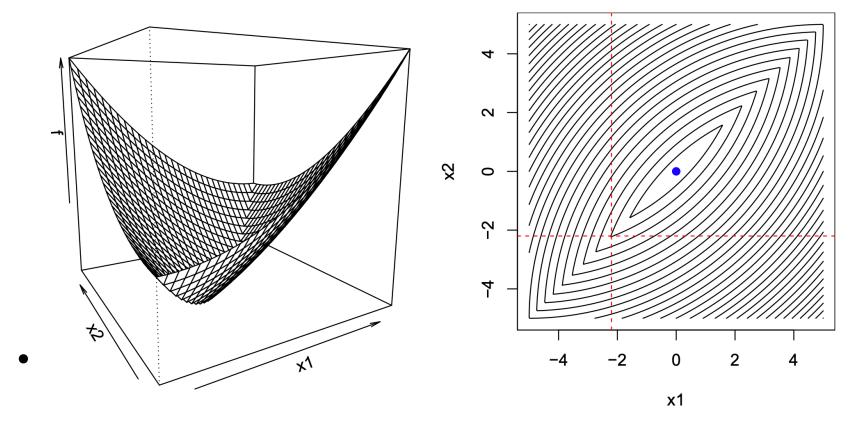




- when coordinate descent has stopped, that means $\frac{\partial f(x)}{\partial x_i} = 0 \text{ for all } j \in \{1, \dots, d\}$
- this implies that the gradient $\nabla_x f(x) = 0$, which happens only at minimum

When does coordinate descent work?

• Consider minimizing a **non-differentiable convex** function f(x), then coordinate descent can get stuck

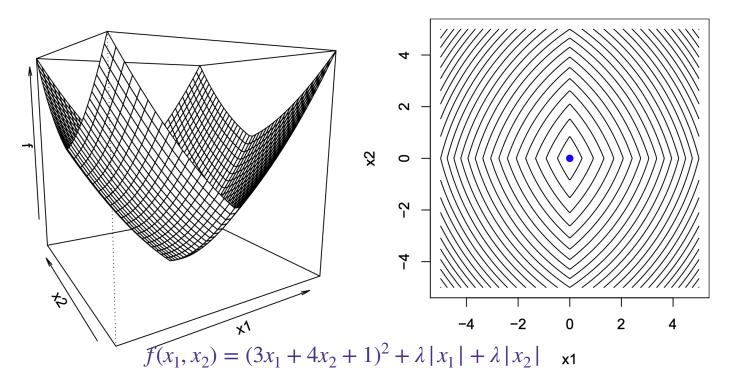


$$f(x_1, x_2) = (3x_1 + 4x_2 + 1)^2 + \lambda |x_1 - x_2|$$

When does coordinate descent work?

- then how can coordinate descent find optimal solution for Lasso?
- consider minimizing a **non-differentiable convex** function but has a structure of $f(x) = g(x) + \sum_{j=1}^d h_j(x_j)$, with differentiable convex

function g(x) and coordinate-wise non-differentiable convex functions $h_i(x_i)$'s, then coordinate descent converges to the global minima

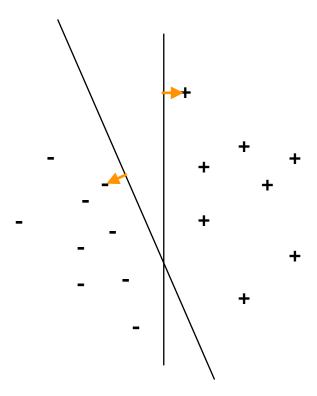


Questions?

Lecture 16: Support Vector Machines

How do we choose the best linear classifier?

- informally, margin of a set of examples to a decision boundary is the distance to the closest point to the decision boundary
- for linearly separable datasets, maximum margin classifier is a natural choice
- large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points



Geometric margin

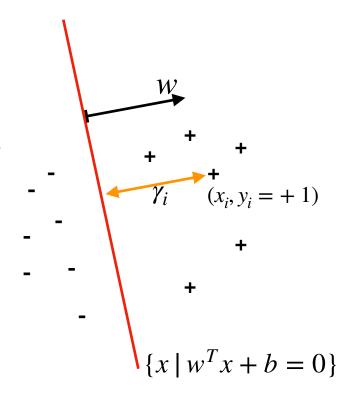
- given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$,

which is the set of points that are orthogonal to $w^{T}x+b$ with a shift of b

• we define **functional margin** of (b, w) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$

(The proof is on the next slide)



Geometric margin

- the distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows
- We know that if you move from x_i in the negative direction of w by length γ_i , you arrive at the line, which can be written as

$$\left(x_i - \frac{w}{\|w\|_2} \gamma_i\right) \text{ is in } \{x \mid w^T x + b = 0\}$$

so we can plug the point in the formula:

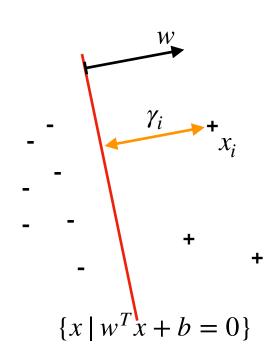
$$w^{T}\left(x_{i} - \frac{w}{\|w\|_{2}}\gamma_{i}\right) + b = 0$$
which is

which is

$$w^T x_i - \frac{\|w\|_2^2}{\|w\|_2} \gamma_i + b = 0$$
 and hence

$$\gamma_i = \frac{w^T x_i + b}{\|w\|_2},$$

and we multiply it by y_i so that for negative samples we use the opposite direction of -w instead of w

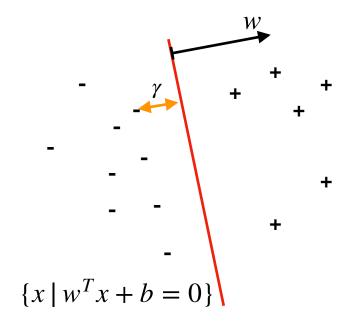


Geometric margin

 the margin with respect to a set is defined as

$$\gamma = \min_{i=1}^{n} \gamma_i$$

 among all linear classifiers, we would like to find one that has the maximum margin



Maximum margin classifier

we propose the following optimization problem:

- if we fix (w, b), the optimal solution of the optimization is the margin
- together with (w, b), this finds the classifier with the maximum margin
- note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid
- the above optimization looks difficult, so we transform it using **reparametrization**

$$\text{maximize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \quad \gamma \\ \text{subject to} \quad \frac{y_i(w^Tx_i + b)}{\|w\|_2} \geq \gamma \quad \text{for all } i \in \{1, \dots, n\} \\ \quad \|w\|_2 = \frac{1}{\gamma} \\ \bullet \quad \text{Because of scale invariance, the optimal solution does not change,}$$

• Because of scale invariance, the optimal solution does not change, as the solutions to the original problem did not depend on $||w||_2$, and only depends on the direction of w

• $\max_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \gamma$

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

• the above optimization still looks difficult, but can be transformed into

$$\max_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{\|w\|_2}$$
 (maximize the margin)

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$
 for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

which simplifies to

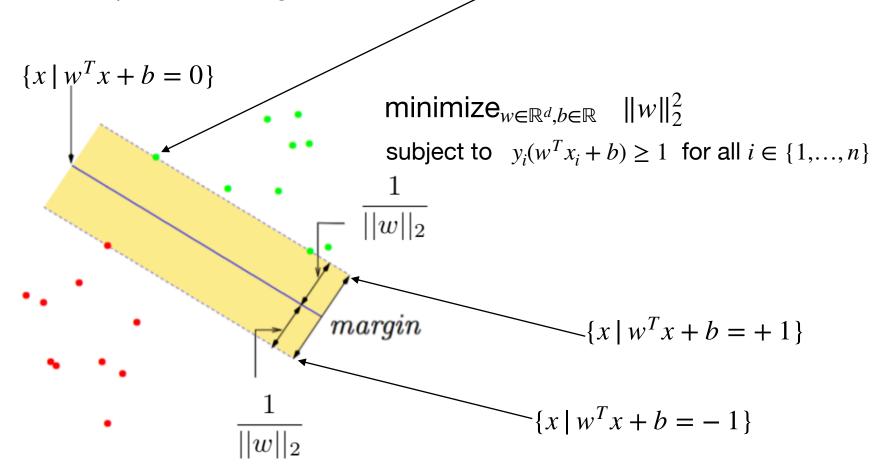
minimize
$$_{w \in \mathbb{R}^d, b \in \mathbb{R}} \| \|w \|_2^2$$

subject to $y_i(w^Tx_i + b) \ge 1$ for all $i \in \{1, ..., n\}$

- this is a quadratic program with linear constraints, which can be easily solved
- once the optimal solution is found, the margin of that classifier (w, b) is $\frac{1}{\|w\|_2}$

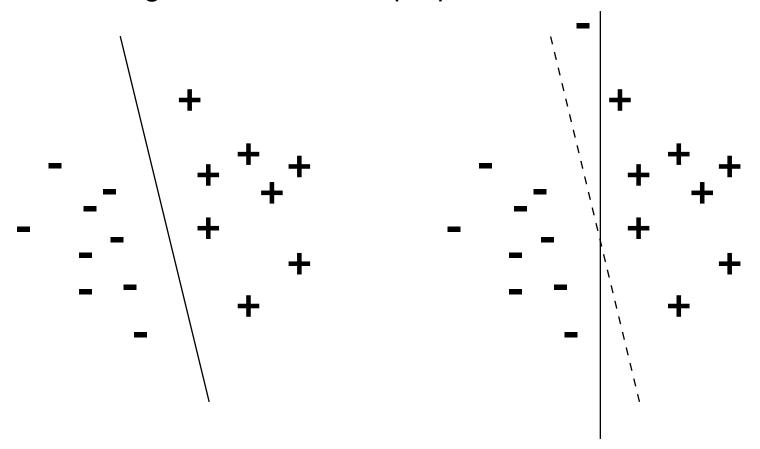
What if the data is not separable?

- we cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- otherwise, there is no feasible solution
- the examples at the margin are called support vectors



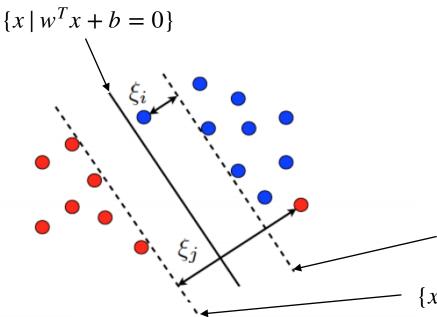
Two issues

max-margin formulation we proposed is sensitive to outliers



• it does not generalize to non-separable datasets

What if the data is not separable?



 we introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$$\{x \,|\, w^T x + b = -1\}$$

• this gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|_2^2 + c \sum_{i=1}^n \xi_i$

subject to
$$y_i(w^Tx_i + b) \ge 1 - \xi_i$$
 for all $i \in \{1,...,n\}$ $\xi_i \ge 0$ for all $i \in \{1,...,n\}$

the (re-scaled) margin (for each sample) is allowed to be less than one, but you pay $c\xi_i$ in the cost, and c balances the two goals: maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

• for the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

notice that at optimal solution, ξ_i 's satisfy

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- so one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

Sub-gradient descent for SVM

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

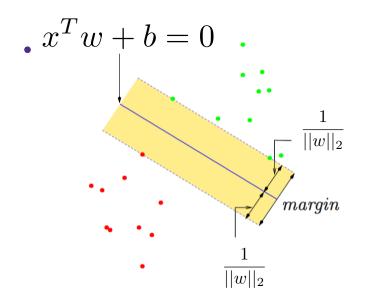
- as it is non-differentiable, we solve it using sub-gradient descent
- which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set)
- this means that we can take (a generic form derived from previous page) $\partial_w \mathcal{E}(w^Tx_i+b,y_i) \ = \ \mathbf{I}\{y_i(w^Tx_i+b) \le 1\}(-y_ix_i)$ and apply

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \left(\sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i x_i) + \frac{2}{c} w^{(t)} \right)$$

$$b^{(t+1)} \leftarrow b^{(t)} - \eta \sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i)$$

Lecture 17: Kernels

What if the data is not linearly separable?



some points don't satisfy margin constraint:

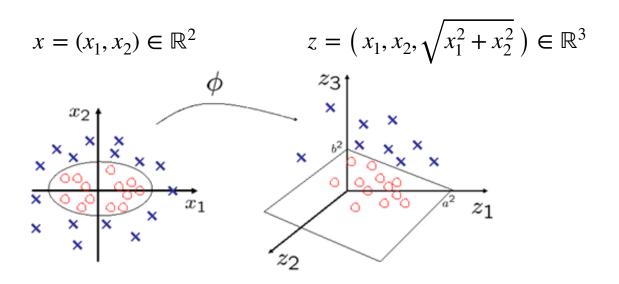
$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Two options:

- 1. Introduce slack to this optimization problem (Support Vector Machine)
- 2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

Use features, for example,



 In high dimensional feature space, it is easier to linearly separate different classes

Creating Features

• Feature mapping $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original data into a rich and high-dimensional feature space (usually $d \ll p$)

For example, in d=1, one can use

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$

For example, for d>1, one can generate vectors $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$

and define features:

$$h_j(x) = (u_j^T x)^2$$

$$h_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$

$$h_j(x) = \cos(u_j^T x)$$

Feature space can get really large really quickly!

Degree-d Polynomials

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

This notation is for dot product (which is the same as inner product)

- So, if we can represent our
 - training algorithms and
 - decision rules for prediction
- as functions of dot products of feature maps (i.e. $\{\phi(x)\cdot\phi(x')\}$) and if we can find a kernel for our feature map such that

$$K(x \cdot x') = \phi(x) \cdot \phi(x')$$

then we can avoid explicitly copmuting (high-dimensional) $\{\phi(x)\}$

Linear Regression as Kernels

• Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Feature space can get really large really quickly!

General d: Dimension of $\phi(u)$ is roughly p^d if $u \in \mathbb{R}^p$

Feature expansion can be written **implicitly** $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$

Examples of Kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^p$$

Gaussian (squared exponential) kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(u, v) = \tanh(\gamma \cdot u^T v + r)$$

The Kernel Trick

Pick a kernel K

For a linear predictor, show $w = \sum_i \alpha_i x_i$

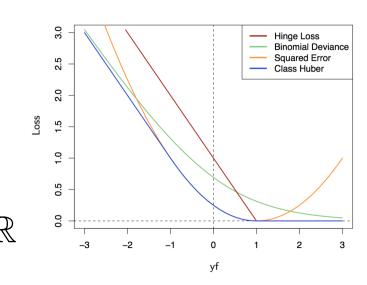
Change loss function/decision rule to only access data through dot products

Substitute $K(x_i, x_j)$ for $x_i^T x_j$

Loss Functions

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i$$

$$x_i \in \mathbb{R}^d$$
 $y_i \in \mathbb{R}$



Loss functions:

$$\sum_{i=1}^{n} \ell_i(w)$$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

 $0/1 \text{ loss: } \ell_i(w) = \mathbb{I}[\operatorname{sign}(y_i) \neq \operatorname{sign}(x_i^T w)]$

Hinge Loss: $\ell_i(w) = \max\{0, 1 - y_i x_i^T w\}$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

$$= \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?
$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?

$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

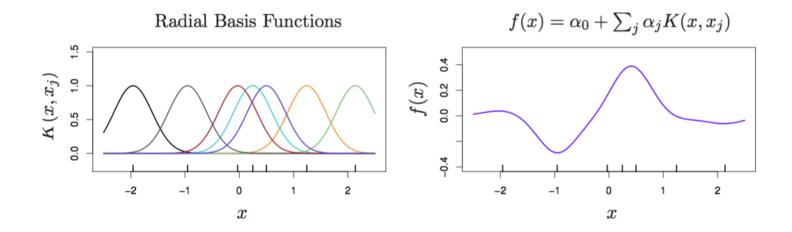
Unregularized kernel least squares can (over) fit any data!

$$\widehat{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$

The Kernel Trick for SVMs

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

This is like weighting "bumps" on each point



RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

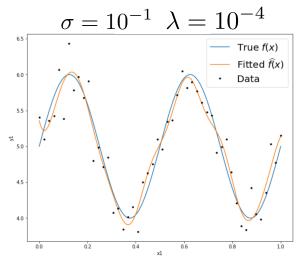
The bandwidth sigma has an enormous effect on fit:

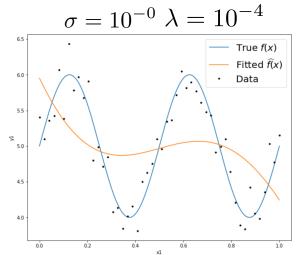
$$\sigma = 10^{-2} \lambda = 10^{-4}$$

$$\sigma = 10^{-2} \lambda = 10^{-4}$$

$$\sigma = 10^{-2} \lambda = 10^{-4}$$

$$\sigma = 10$$



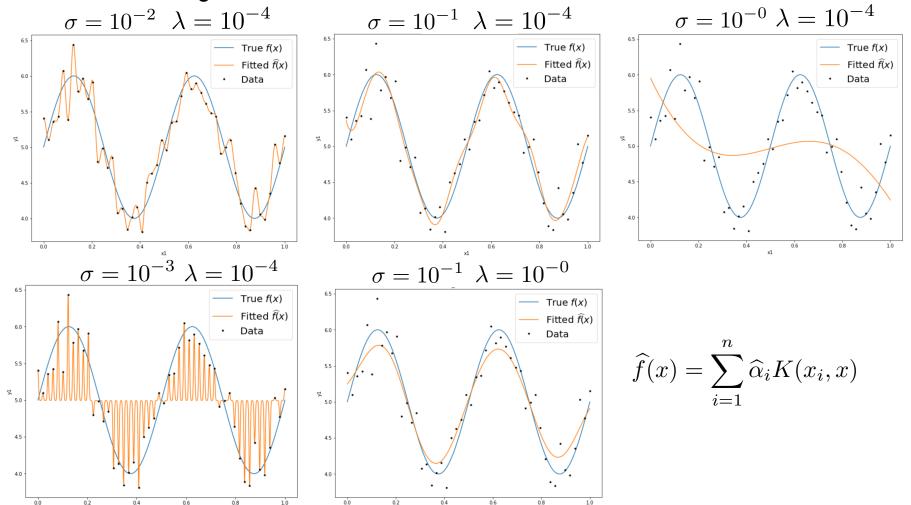


$$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$

RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

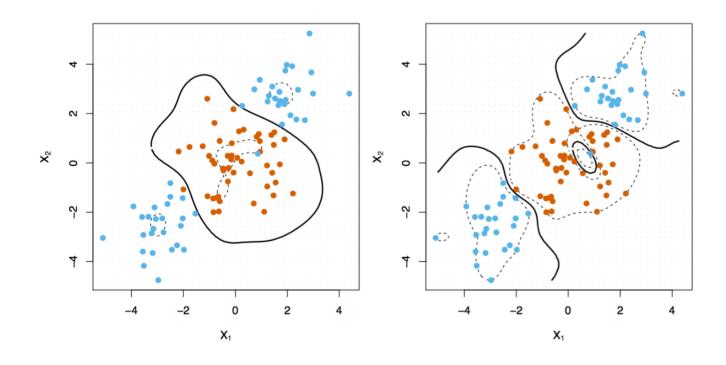
The bandwidth sigma has an enormous effect on fit:



RBF kernel and random features

$$\widehat{w} = \sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

$$\min_{\alpha, b} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + \sum_{j=1}^{n} \alpha_j \langle x_i, x_j \rangle)\} + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$



RBF kernel and random features

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

If n is very large, allocating an n-by-n matrix is tough.

RBF kernel and random features

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

 $2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$

If n is very large, allocating an n-by-n matrix is tough.

$$\phi(x) = \begin{bmatrix} \sqrt{2}\cos(w_1^T x + b_1) \\ \vdots \\ \sqrt{2}\cos(w_n^T x + b_n) \end{bmatrix} \qquad \begin{aligned} w_k &\sim \mathcal{N}(0, 2\gamma I) \\ b_k &\sim \text{uniform}(0, \pi) \end{aligned}$$

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

- x1 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI
- PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA

 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
 LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) $20^3 = 8,000$

$$h_{\text{LQE}}^3(x_1) = 1 \text{ and } h_{\text{LQE}}^3(x_2) = 2.$$

Fixed Feature V.S. Learned Feature