Lecture 15:
Coordinate Descent
(continued)

- How to solve non-smooth optimization like Lasso?

A . 2
Weasso = argmin |ly — Xwif3 + Afjwll,

weR?

Jw)

Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize, ZW) + A||w||; = |Xw —y|I5 + A ||wll

o the goal is to derive an analytical rule for updating wj(t)’s

o let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w;

2
HX[: Jlw, — (y - X[:.2: d]W2:d>H2 +’1(| wi | + [lwylly)

constant

* hence, the coordinate descent update boils down to

wl(t) < arg min HX[: Jlw, — (y X[:.,2: d]w(t 1) H + Al wy |
Wi

Jwy)

How do we find the minima?

» for convex differentiable functions, the minimum is achieved at points
where gradient is zero

80 1

e for convex non-differentiable functions, the minimum is achieved at
points where sub-gradient includes zero

10+

Finding the minima for (aw; — b)? + 1| wy |

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+)] for w; =0
2a(aw; —b) — X for wy; <0

Finding the minima for (aw, — b)’ + A wy |

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+)] for w; =0
2a(aw; —b) — X for wy; <0

Finding the minima for (aw, — b)’ + A wy |

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+)] for w; =0
2a(aw; —b) — X for wy; <0

Finding the minima for (aw, — b)’ + A wy |

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > A L
wi 0 for —A<2ab< N\ = Sl
+ 52y for A < —2ab

Qo

How do we find the minimizer?

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(awy — b) + A for wy >0
Of(w1) = { [—2ab— X\, —2ab+) for wy =0
2a(awy, — b) — A for wy <0

e case 1:

e 2a(aw; — b) + A =0 for some w; > 0

* this happens when

— A+ 2ab
Wl — > O
2a?

* hence, v
b o« 7

(?)
%% €~ — — —_—, 1 -t 25 5
1 a 2a? T

if 1 < 2ab minimum

e case 2:

200 1

e 2a(aw; — b) — A = 0 for some w; < 0
 this happens when

150

A+ 2ab
wp = <0 \J
2a?
* hence, w75 5 A
o b 4 |
Wl A ; + 2a2’ minimum
if A < —2ab

e case 3:
e 0 € [—2ab— A, —2ab+ 1]
OandW1=O

* hence,
w0,

if —4 < 2ab < 4

minimum

Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > A\
w 0 for — A< 2ab<)\
+ 525 for A < —2ab

Q|

X[10 (y = X[:,2 - dlw_y)
VXL TX: LT

where a = \/X[: A17X[:,1],and b =

100
40
201 5 \/
* 2:5 5 7;5 10 -8 -6 -4 -2 2 4 6 8 -1‘0 -7;5 5 -2|A5 Z;ST 5 7;5 ‘IIO
| A

10 minimum minimum minimum

11

When does coordinate descent work?

e Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

-

e when coordinate descent has stopped, that means

o) =O0forallj € {1,...,d}

a.x]'

e this implies that the gradient V, f(x) = 0, which happens only
at minimum

When does coordinate descent work?

* Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck

7

X2
0

7
\ /////////////
71
744

Flxp, xy) = Bx; +4x, + 1)? + A x; — x,

When does coordinate descent work?

e then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-d(;fferentiable convex function but has a

structure of f(x) = g(x) + Z hj(xj) , with differentiable convex

j=1
function g(x) and coordinate-wise non-differentiable convex functions
hj(x,-)’s, then coordinate descent converges to the global minima

v pa—
()
~ X 4
(K 7
§- o:'/’:'O
O Q AN /
SO]
XSO0
\\\\ \ ‘ ~ NN ¥
\ W)
\\\\\ Q \s - & \0' K "' /// 7 7
\) XA
\E\\:‘: N) 4
W G
D QLXK N |
R
\
[I

X2
0
|

&

[I
-4 -2 0 2 4

(s %) = By + 4%, + D2+ 4] x| + 4] x| x1

13

Questions?

Lecture 16:
Support Vector Machines

W

How do we choose the best linear classifier?

* informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

» for linearly separable datasets, maximum margin classifier is a natural
choice

* large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points

Geometric margin
given a set of training examples {(x;, y;)}'_;

and a linear classifier (w, b) € RYx R

such that the decision boundary is
a separating hyperplane {x | b + wx[1] + wyx[2] + -+ + w, x[d] = 0},

w!l x+b
which is the set of points that are orthogonal to w with a shift of b
we define functional margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y;) to the
decision boundary, which is

(w'x; + b) i
Vi =Di
wll2 :

(The proof is on the next slide)

{(x|wix+b=0)}

Geometric margin

« the distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows
e We know that if you move from x;

in the negative direction of w by length y;, |44
you arrive at the line, which can be written as

w Y;
(xl. >|sm{x|w x+b=0} - L >+
Il K
* so we can plug the point in the formula: -
T W T
w (xl- — Y; > +b =0 +
o Iwll -
which is
Il Lelwletb=0)
X — Vi +b =0
Iwll
and hence
wal- + b
Vi = ’
[Iwll

and we multiply it by y; so that for negative samples we use the opposite
direction of —w instead of w

Geometric margin

* the margin with respect to a set w
is defined as

n) Y

Yy = miny; -

1= -

e among all linear classifiers, -
we would like to find one that has

the maximum margin

x|wlx+b=0)

Maximum margin classifier

we propose the following optimization problem:

Max1mze,,cpd per yeR ¥ (maximize the margin)
. yl-(wal- + b) . .
subject to >y foralli € {1,...,n} (s.t. y is a lower bound on
Iwll> the margin)

if we fix (w, b), the optimal solution of the optimization is the margin
together with (w, b), this finds the classifier with the maximum margin

note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

the above optimization looks difficult, so we transform it using reparametrization

maximize,,crd peR yeR ¥ }/+
(w!x; + b) : +
subject to o l >y foralli € {l,...,n} - +
il -
Iwlly =— - - +

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w||,,
and only depends on the direction of w

maximize,,crd per yeR ¥

_ yl-(wal-+ b) .
subject to >y foralli € {1,...,n}
Iwll>

wlly =—

the above optimization still looks difficult, but can be transformed into

maximize,,crd peR (maximize the margin)

wlla

(wlx, + b) 1 _
i l > foralli € {1,...,n}(now
Iwlla Iwll> 1wll2
a lower bound
on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,eraper ||W]|5

subjectto y,(wlx;+b) > 1 foralli € {1,...,n}

this is a quadratic program with linear constraints, which can be easily solved
1

Iwlla

once the optimal solution is found, the margin of that classifier (w, b) is

What if the data is not separable?

we cheated a little in the sense that the reparametrization of ||w||, = —is

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

o otherwise, there is no feasible solution
* the examples at the margin are called support vectors

x|wlx+b=0)
minimize,.criper [IWIl5

subjectto y(w'x;+b)>1 forallie {(1,...,n}
1

r [|w
%;;;\\\\\\\uhﬁk+b=+l}

! \{xlex+b=—l}

2

Two issues

* max-margin formulation we proposed is sensitive to outliers

+ e
+ | +
- + - \ +
_- Ty I +
- o\ + - 1+
- + - +
- + - -

* it does not generalize to non-separable datasets

What if the data is not separable?

(xlwix b =0) e we introduce slack so that
some points can violate the
margin condition

ywlx, +b) > 1-¢

No x|wix+b=-1)

e this gives a new optimization problem wi;tlh some positive constant ¢ € R
minimize,,crd peRr scRrr ||w||% +c Z &;
i=1
subjectto y(w'x.+b)>1—¢ foralli € {1,...,n}
& >0 foralie{l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

e for the optimization problem

n
minimize,,crd peRr seRn ||w||% +c 2 &
i=1
subject to yl-(wal-+ by>1-¢& foralli € {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &,'s satisfy
& = 0 if margin is big enough yl-(wal- +b)>1,o0r
_ T : o . T
o & =1—y(w"x;+ b), if the example is within the margin y;(w" x; + b) < 1

e SO One can write
o & =max{0,1 —y,(w" x; + b)}, which gives

n
. 1 2 T
minimize,,criper —|[W|[5 + Zmax{O,l —y(w'x;+b)}
c
i=1

Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,epiper —[IWII3 + » max{0.1 — y,(w'x,+b)}
C
i=1
as it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
and apply

< 2
WD w® = (3 T Or)+ b0) < 1) =yp) + Zw)
C
nl=1

b(l‘+1) «— b(t) — 1 Z I{yi((W(t))Txi + b(t)) < 1)}(_yl)
i=1

Lecture 17:
Kernels

What if the data is not linearly separable?

some points don’t satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

e Use features, for example,

e |n high dimensional feature space, it is easier
to linearly separate different classes

Creating Features

e Feature mapping i : RY — R” maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use
P R4
one can generate vectors {u;};_; C

[hi(z)] x
ha(x) x? and define features:
hp(x)| [P (@) :

i Radis T 1+ exp(u;)

hj(x) = Cos(u;‘-Fa:)

Feature space can get really large really quickly!

Degree-d Polynomials

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(x) - ¢(z') for all x, x'.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x")})
and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x')

then we can avoid explicitly copmuting (high-dimensional) {¢(x)}

Linear Regression as Kernels

. Consider Ridge regression: w = arg minld ly — lel% + lell%
we

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

] (6(u), (0)) = w1 + uz0s

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

d=15000) = |11 {6(0),6(0) = ur + uar
-
2
d=2:0(u) = | 2 | ($u), () = ufv] +ud} + 2uruzvivs

Feature space can get really large really quickly!

General d: Dimension of ¢(u) is roughly p? if u € R?

Feature expansion can be written implicitly K (u,v) = (u - V)p

Examples of Kernels

- Polynomials of degree exactly d
K(u,v) = (u-v)P

- Polynomials of degree up to d
K(u,v) = (u-v+ 1)’

- Gaussian (squared exponential) kernel
lu — v
202

K(u,v) = exp (—
- Sigmoid

K (u,v) = tanh(y - utv +)

The Kernel Trick

Pick a kernel K
For a linear predictor, show w =) a;z;

Change loss function/decision rule to only access data
through dot products

Substitute K (z;, ;) for z! x;

Loss Functions

{(xi,y)tie1 x;,eRY 4, €R

n
= Loss functions: Zﬁi(w)
1=1
Squared error Loss: £;(w) = (y; — zl w)?

Logistic Loss: ¢;(w) = log(1 + exp(—y;] w))
0/1 loss: £;(w) = T[sign(y;) # sign(z! w)]

Hinge Loss: £;(w) = max{0,1 — y;z} w}

The Kernel Trick for regularized least squares

@:argmmz —xlw)? + M|wl||?

There exists an a € R™: w = g T
i=1

The Kernel Trick for regularized least squares

@:argmmz — 2 w)? 4+ NJwl|?

There exists an a € R™: w = E T
i=1

a = arg moin z:(yZ — Z aj{m, z:))? +)\Z Z ;o (T, x5)
i=1 j=1

Z—lj 1

mn n
:argmoinZ(yi —ZajK(:c,,;,xj +)\ZZ%0¢J (24, x5)
i=1 j=1

=1 5=1

= argmin ||y — Kal[3 + Ao’ Ka

K(:Ei, LEj) = <§b($z)a ¢($])>

Why regularization?

Typically, K >~ 0. What if A =07

a = argmin ||y — Ko||3 + A" Ko
(87

Why regularization?

Typically, K >~ 0. What if A =07

a = argmin ||y — Ko||3 + A" Ko
(87

Unregularized kernel least squares can (over) fit any data!

a=K'y

The Kernel Trick for SVMs

RBF Kernel

K (1, v) = exp <—

Ju —v||3
202

This is like weighting “bumps” on each point

Radial Basis Functions

K(z,zj)
00 05 10 15

f(z)

00 02 04

04

)

RBF Kernel

K (u,v) = e (-

The bandwidth sigma has an enormous effect on fit:
c=10"* A=10"*

c=10"2 A=10""1

Ju —vi|

2
2

202

)

c=10"°A=10"*%

—— True f(x)

Fitted f(x)

60 : —\
55 /
50 '
e
45 .

—— True f(x)

Fitted f(x)
Data

—— True f(x)

Fitted f(x)
- Data

.
2 A Dat
v * A
\
.
A 1
/
!
\
N
/
\
y !
{
.
\
J
\
I J
04 06 08 10
x1

.
A.
.
\
y
\
R
.
4 06 08 10
x1

[u — v]|3

RBF Kernel K(u,v) =exp | —— —

The bandwidth sigma has an enormous effect on fit:
c=10"2 A=10"1 c=10"" A=10"1 c=10°X=10"*

65 65
—— True f(x) —— True f(x) —— True f(x)
Fitted f(x) . Fitted f(x) . Fitted f(x)
6

.“ - Data /\ - Data &0 . . - Data
X . 55 A

c=10"3) x=10"" c=10"1 A=10""
‘. — Truefix) - : —— True f(x)

Fitted f{x) Fitted fx)
- Data) . Data

v i=1

RBF kernel and random features

B = > max{0,1 - y;(b+ 2T w)} + Ajwll
1=1

mmZmaX{() 1 —wy; b—l—Zozj Ti, i)} + A Z Qo (X, 2 5)

1,7=1

Xz
0
|

RBF kernel and random features
K(u,v) =ex (_Hu—v||§)
, V) = exp

202

If n is very large, allocating an n-by-n matrix is tough.

RBF kernel and random features

202

K(u,v) = exp (_HU—V!I%)

If n is very large, allocating an n-by-n matrix is tough.

V2 cos(wlz +by)]

V2 cos(wlz +by) |

Zcos(a) cos(B) = cos(a + B) + cos(a —)

e’ = cos(z) + jsin(z)

Wi NN(O,Q’}/I)

b ~ uniform(0, 7)

[Rahimi, Recht NIPS 2007]
“NIPS Test of Time Award, 2018”

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x1

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAY QIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) 203 =8,000
h},.(x1) = 1 and k] (x2) = 2.

LQE

Fixed Feature V.S. Learned Feature

