Lecture 15: Coordinate Descent (continued) - How to solve non-smooth optimization like Lasso? $$\hat{w}_{\text{Lasso}} = \arg\min_{w \in \mathbb{R}^d} \ \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_1$$ #### Coordinate descent for Lasso - let us apply coordinate descent on Lasso, which minimizes $\min_{w} \mathcal{L}(w) + \lambda \|w\|_1 = \|\mathbf{X}w \mathbf{y}\|_2^2 + \lambda \|w\|_1$ - the goal is to derive an **analytical rule** for updating $w_j^{(t)}$'s - let us first write the update rule explicitly for $w_1^{(t)}$ - first step is to write the loss in terms of w_1 $$\|\mathbf{X}[:,1]w_1 - (\mathbf{y} - \mathbf{X}[:,2:d]w_{2:d})\|_2^2 + \lambda(\|w_1\| + \|w_{2:d}\|_1)$$ hence, the coordinate descent update boils down to $$w_1^{(t)} \leftarrow \arg\min_{w_1} \left\| \mathbf{X}[:,1]w_1 - \left(\mathbf{y} - \mathbf{X}[:,2:d]w_{2:d}^{(t-1)}\right) \right\|_2^2 + \lambda |w_1|$$ #### How do we find the minima? for convex differentiable functions, the minimum is achieved at points where gradient is zero • for **convex non-differentiable** functions, the minimum is achieved at points where sub-gradient includes zero • the minimizer $w_1^{(t)}$ is when zero is included in the sub-gradient $$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$ • the minimizer $\boldsymbol{w}_1^{(t)}$ is when zero is included in the sub-gradient $$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$ • the minimizer $\boldsymbol{w}_1^{(t)}$ is when zero is included in the sub-gradient $$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$ considering all three cases, we get the following update rule by setting the sub-gradient to zero $$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \le 2ab \le \lambda \iff \frac{-\lambda}{2a^2} \le \frac{b}{a} \le \frac{\lambda}{2a^2} \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$ #### How do we find the minimizer? • the minimizer $w_{\rm 1}^{(t)}$ is when zero is included in the sub-gradient $$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$ - case 1: - $2a(aw_1 b) + \lambda = 0$ for some $w_1 > 0$ - this happens when his happens when $$w_1 = \frac{-\lambda + 2ab}{2a^2} > 0$$ hence, $$w_1^{(t)} \leftarrow \frac{b}{a} - \frac{\lambda}{2a^2},$$ if $$\lambda < 2ab$$ - case 2: - $2a(aw_1 b) \lambda = 0$ for some $w_1 < 0$ - this happens when $$w_1 = \frac{\lambda + 2ab}{2a^2} < 0$$ hence, $$w_1^{(t)} \leftarrow \frac{b}{a} + \frac{\lambda}{2a^2},$$ if $$\lambda < -2ab$$ - case 3: - $0 \in [-2ab \lambda, -2ab + \lambda]$ - and $w_1 = 0$ - hence, $w_1^{(t)} \leftarrow 0$, if $$-\lambda \le 2ab \le \lambda$$ #### Coordinate descent on Lasso minimum 10 considering all three cases, we get the following update rule by setting the sub-gradient to zero $$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \leq 2ab \leq \lambda \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$ • where $$a = \sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}$$, and $b = \frac{\mathbf{X}[:,1]^T (\mathbf{y} - \mathbf{X}[:,2:d] w_{-1})}{\sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}}$ #### When does coordinate descent work? • Consider minimizing a **differentiable convex** function f(x), then coordinate descent converges to the global minima - when coordinate descent has stopped, that means $\frac{\partial f(x)}{\partial x_i} = 0 \text{ for all } j \in \{1, \dots, d\}$ - this implies that the gradient $\nabla_x f(x) = 0$, which happens only at minimum #### When does coordinate descent work? • Consider minimizing a **non-differentiable convex** function f(x), then coordinate descent can get stuck $$f(x_1, x_2) = (3x_1 + 4x_2 + 1)^2 + \lambda |x_1 - x_2|$$ #### When does coordinate descent work? - then how can coordinate descent find optimal solution for Lasso? - consider minimizing a **non-differentiable convex** function but has a structure of $f(x) = g(x) + \sum_{j=1}^d h_j(x_j)$, with differentiable convex function g(x) and coordinate-wise non-differentiable convex functions $h_i(x_i)$'s, then coordinate descent converges to the global minima ## **Questions?** # Lecture 16: Support Vector Machines #### How do we choose the best linear classifier? - informally, margin of a set of examples to a decision boundary is the distance to the closest point to the decision boundary - for linearly separable datasets, maximum margin classifier is a natural choice - large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points ## Geometric margin - given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$ - and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$ - such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$, which is the set of points that are orthogonal to $w^{T}x+b$ with a shift of b • we define **functional margin** of (b, w) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is $$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$ (The proof is on the next slide) ## Geometric margin - the distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows - We know that if you move from x_i in the negative direction of w by length γ_i , you arrive at the line, which can be written as $$\left(x_i - \frac{w}{\|w\|_2} \gamma_i\right) \text{ is in } \{x \mid w^T x + b = 0\}$$ so we can plug the point in the formula: $$w^{T}\left(x_{i} - \frac{w}{\|w\|_{2}}\gamma_{i}\right) + b = 0$$ which is which is $$w^T x_i - \frac{\|w\|_2^2}{\|w\|_2} \gamma_i + b = 0$$ and hence $$\gamma_i = \frac{w^T x_i + b}{\|w\|_2},$$ and we multiply it by y_i so that for negative samples we use the opposite direction of -w instead of w ## Geometric margin the margin with respect to a set is defined as $$\gamma = \min_{i=1}^{n} \gamma_i$$ among all linear classifiers, we would like to find one that has the maximum margin # Maximum margin classifier we propose the following optimization problem: - if we fix (w, b), the optimal solution of the optimization is the margin - together with (w, b), this finds the classifier with the maximum margin - note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid - the above optimization looks difficult, so we transform it using **reparametrization** $$\text{maximize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \quad \gamma \\ \text{subject to} \quad \frac{y_i(w^Tx_i + b)}{\|w\|_2} \geq \gamma \quad \text{for all } i \in \{1, \dots, n\} \\ \quad \|w\|_2 = \frac{1}{\gamma} \\ \bullet \quad \text{Because of scale invariance, the optimal solution does not change,}$$ • Because of scale invariance, the optimal solution does not change, as the solutions to the original problem did not depend on $||w||_2$, and only depends on the direction of w • $\max_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \gamma$ subject to $$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$ $$\|w\|_2 = \frac{1}{\gamma}$$ • the above optimization still looks difficult, but can be transformed into $$\max_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{\|w\|_2}$$ (maximize the margin) subject to $$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$ for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin) which simplifies to minimize $$_{w \in \mathbb{R}^d, b \in \mathbb{R}} \| \|w \|_2^2$$ subject to $y_i(w^Tx_i + b) \ge 1$ for all $i \in \{1, ..., n\}$ - this is a quadratic program with linear constraints, which can be easily solved - once the optimal solution is found, the margin of that classifier (w, b) is $\frac{1}{\|w\|_2}$ ## What if the data is not separable? - we cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin - otherwise, there is no feasible solution - the examples at the margin are called support vectors ## Two issues max-margin formulation we proposed is sensitive to outliers • it does not generalize to non-separable datasets ## What if the data is not separable? we introduce slack so that some points can violate the margin condition $$y_i(w^T x_i + b) \ge 1 - \xi_i$$ $$\{x \mid w^T x + b = +1\}$$ $$\{x \,|\, w^T x + b = -1\}$$ • this gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|_2^2 + c \sum_{i=1}^n \xi_i$ subject to $$y_i(w^Tx_i + b) \ge 1 - \xi_i$$ for all $i \in \{1,...,n\}$ $\xi_i \ge 0$ for all $i \in \{1,...,n\}$ the (re-scaled) margin (for each sample) is allowed to be less than one, but you pay $c\xi_i$ in the cost, and c balances the two goals: maximizing the margin for most examples vs. having small number of violations ## Support Vector Machine • for the optimization problem $$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$ notice that at optimal solution, ξ_i 's satisfy - $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or - $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$ - so one can write - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$ ## Sub-gradient descent for SVM SVM is the solution of minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$ - as it is non-differentiable, we solve it using sub-gradient descent - which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set) - this means that we can take (a generic form derived from previous page) $\partial_w \mathcal{E}(w^Tx_i+b,y_i) \ = \ \mathbf{I}\{y_i(w^Tx_i+b) \le 1\}(-y_ix_i)$ and apply $$w^{(t+1)} \leftarrow w^{(t)} - \eta \left(\sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i x_i) + \frac{2}{c} w^{(t)} \right)$$ $$b^{(t+1)} \leftarrow b^{(t)} - \eta \sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i)$$ # Lecture 17: Kernels ## What if the data is not linearly separable? some points don't satisfy margin constraint: $$\min_{w,b} ||w||_2^2$$ $$y_i(x_i^T w + b) \ge 1 \quad \forall i$$ #### Two options: - 1. Introduce slack to this optimization problem (Support Vector Machine) - 2. Lift to higher dimensional space (Kernels) #### What if the data is not linearly separable? Use features, for example, In high dimensional feature space, it is easier to linearly separate different classes ## **Creating Features** • Feature mapping $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original data into a rich and high-dimensional feature space (usually $d \ll p$) For example, in d=1, one can use $$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$ For example, for d>1, one can generate vectors $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$ and define features: $$h_j(x) = (u_j^T x)^2$$ $$h_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$ $$h_j(x) = \cos(u_j^T x)$$ ## Feature space can get really large really quickly! # **Degree-d Polynomials** ## How do we deal with high-dimensional lifts/data? #### A fundamental trick in ML: use kernels A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'. This notation is for dot product (which is the same as inner product) - So, if we can represent our - training algorithms and - decision rules for prediction - as functions of dot products of feature maps (i.e. $\{\phi(x)\cdot\phi(x')\}$) and if we can find a kernel for our feature map such that $$K(x \cdot x') = \phi(x) \cdot \phi(x')$$ then we can avoid explicitly copmuting (high-dimensional) $\{\phi(x)\}$ ## **Linear Regression as Kernels** • Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$ #### **Dot-product of polynomials** $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$ $$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$ $$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$ ## **Dot-product of polynomials** $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$ $$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$ $$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$ ## Feature space can get really large really quickly! General d: Dimension of $\phi(u)$ is roughly p^d if $u \in \mathbb{R}^p$ Feature expansion can be written **implicitly** $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$ ## **Examples of Kernels** Polynomials of degree exactly d $$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$$ Polynomials of degree up to d $$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^p$$ Gaussian (squared exponential) kernel $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$ Sigmoid $$K(u, v) = \tanh(\gamma \cdot u^T v + r)$$ #### **The Kernel Trick** #### Pick a kernel K For a linear predictor, show $w = \sum_i \alpha_i x_i$ Change loss function/decision rule to only access data through dot products **Substitute** $K(x_i, x_j)$ for $x_i^T x_j$ ### **Loss Functions** $$\{(x_i, y_i)\}_{i=1}^n \qquad x_i$$ $$x_i \in \mathbb{R}^d$$ $y_i \in \mathbb{R}$ Loss functions: $$\sum_{i=1}^{n} \ell_i(w)$$ Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$ Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$ $0/1 \text{ loss: } \ell_i(w) = \mathbb{I}[\operatorname{sign}(y_i) \neq \operatorname{sign}(x_i^T w)]$ Hinge Loss: $\ell_i(w) = \max\{0, 1 - y_i x_i^T w\}$ # The Kernel Trick for regularized least squares $$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$ There exists an $$\alpha \in \mathbb{R}^n$$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$ # The Kernel Trick for regularized least squares $$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$ There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$ $$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$ $$= \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$ $$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$ $$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$ # Why regularization? Typically, $$\mathbf{K} \succ 0$$. What if $\lambda = 0$? $$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$ # Why regularization? Typically, $$\mathbf{K} \succ 0$$. What if $\lambda = 0$? $$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$ Unregularized kernel least squares can (over) fit any data! $$\widehat{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$ ## The Kernel Trick for SVMs $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$ ### This is like weighting "bumps" on each point ## **RBF Kernel** $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$ The bandwidth sigma has an enormous effect on fit: $$\sigma = 10^{-2} \lambda = 10^{-4}$$ $$\sigma = 10^{-2} \lambda = 10^{-4}$$ $$\sigma = 10^{-2} \lambda = 10^{-4}$$ $$\sigma 10$$ $$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$ # **RBF Kernel** $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$ The bandwidth sigma has an enormous effect on fit: #### **RBF** kernel and random features $$\widehat{w} = \sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$ $$\min_{\alpha, b} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + \sum_{j=1}^{n} \alpha_j \langle x_i, x_j \rangle)\} + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$ ### **RBF** kernel and random features $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$ If n is very large, allocating an n-by-n matrix is tough. #### RBF kernel and random features $$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$ $2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$ If n is very large, allocating an n-by-n matrix is tough. $$\phi(x) = \begin{bmatrix} \sqrt{2}\cos(w_1^T x + b_1) \\ \vdots \\ \sqrt{2}\cos(w_n^T x + b_n) \end{bmatrix} \qquad \begin{aligned} w_k &\sim \mathcal{N}(0, 2\gamma I) \\ b_k &\sim \text{uniform}(0, \pi) \end{aligned}$$ # **String Kernels** Example from Efron and Hastie, 2016 Amino acid sequences of different lengths: - x1 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI - PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP All subsequences of length 3 (of possible 20 amino acids) $20^3 = 8,000$ $$h_{\text{LQE}}^3(x_1) = 1 \text{ and } h_{\text{LQE}}^3(x_2) = 2.$$ # **Fixed Feature V.S. Learned Feature**