Lecture 14:
Stochastic Gradient Descent

-What do we use in practice?

W

Machine Learning Problems

- Givendata: {(z;,v;)}, z;, €eRY 4, €R
_ 1 1
- Learning a model’s parameters: ;Z Zi(w) = ;2 C(fuX)s)

e Gradient Descent (GD):
one update takes cdn operations/time for some constant ¢>0

1 n
Wi < Wy — 77; 2 VZw,)
=1

e Stochastic Gradient Descent (SGD): one update takes cd operations/time

I; drawn uniform at

P _
Wi W= Vflz(wf) random from {1,...,n}

e SGD is an unbiased estimate of the GD

E[VLr, (w)] =

Stochastic Gradient Descent

Theorem

_ I; drawn uniform at
Llet w = ws — NV, lr, (w ‘ t
t+1 t = TV w It() w=w,; random from {1,...,n}

i (lwg— wll3 SR and supmax |[Vei(w)[3 < G then
w ()

after T steps of SGD with stepsize

E[Z(W) — £(ws)] <

Z‘V\‘LP;WC 7'15000 -560 0 59(30 10‘00 15‘00 \5000
T
. | oI Wt w6 IRG R
Selecting the optimal stepsize, min——4+—=4/—— for n = -
>0 2Tn 2 T GT
1 I 1 (Fixed optimal step size)
W= — w Convergence rate: 0<—>
— t VT R G
=1 2Tn? 2

In practice use last iterate
(Inp) Taking the derivative of RHS to zero

We want to show that
T Follows from convexity of Z(-)

1 1 - .
[Elf< ?2 wt> _ f(w*)] < [El? Z £(w,) — f(w*)] <— and .Jensen s inequality
=1 i=1 (3 slides later)

T

< %; E[¢(w) — £(w)]

Follows from
linearity of expectation

R nG

< —+
2Ty 2

<+— We are left to show this

Proof Ell|wys1 — ws|[3] = E[|Jwe — nV {7, (we) — w.][3]

= Elivenl] + v | 2 Elrged]

Ut ttarute pise Goadl.
G e I L
T Lz | =
V(e (W,cf‘ W)Z" d(pf) f-d_(wﬂ) Z " QCT (Ox tod Alresatis,

1)
~

Com VCK?"{T Q(‘* 9 ch.)

Qloe) +F7ﬁ W (o™t waﬂ

N
QW)= 'VZF,Z Jeie) x
= | \WP’(\L/’ ,é_.Q,CWNj VA

I

Stochastic Gradient Descent

Proof

E[l|wey 1 — will3) = El|Jw, — nVez, (wi) — w.][3]
< [E[”Wt Wi ||2]+772G 2n((w,) — € (ws))

iy fcon) & 3, (E] Blecil’])

Towcrm
Z (Q(ue) }L(oo,()>< L (B[(Nu Aol j Wwﬁ?%)

= K JJK‘ZQ
)7 2

S Eltw) — (w.)] € oo+

t=1 2?7

Stochastic Gradient Descent

Proof

Efl|wesr — wil[3] = E[|[we — Ve, (we) — w|[3]

= E[llwe — w.ll3] = 20E[V 1, (we) " (we — wi)] + 0" E[|[VL, (we) | [3]

< E[fJw; — w.3] = 2nE[l(w:) — L(ws)] +1*G

RV, (w)! (w; — w,)] = E|E[V{;, (we) ! (wy — w) |, wi, ..o e, wy—1]]

— E[Vﬁ(wt)T(wt — wy)]
> B[((wy) — ()]

T

> Ell(w) — b(w,)] <

1
o (Elllwr — will2] = Elllwrir — wil3] + Tn*G)
t=1 R TG

<
<ot 3

T
3 Eleon) - £ea] | o+ 119

We have shown:
_— 2n 2

Jensen’s ingquality

}
E [f(% i Wt) _ f(w*)] < %i E[£(w,) — £(w:)]
< R N nG

2nT 2

Jensen’s inequality:
For any {wy, ..., wy} and a convex function £(-), we have

£(w)

Mini-batch SGD

e Instead of one iterate, average B stochastic gradient together

e Advantages:
- Smaller variance: the variance of the stochastic gradient

is smaller by a factor of 1/y/B

- Parallelization: each gradient in the mini-batch
can be computed in parallel

1 n
If you have regularizer, — Z Z(w) + r(w), then update
n

i=1
with the stochastic gradient of the loss and gradient of the
regularizer

Questions?

Lecture 14:
Coordinate Descent

- How to solve non-smooth optimization like Lasso?

A . 2
Weasso = 4aIg H;IIR?‘Z “y o XW”2 + /lllwlll
W N

Jw)

W

Sparsity/Complexity tradeoff

1/p
. £,-norm of a vector is defined as [|w/|, = (|W1 P+ | wy [P+ - + |wy |p>
e Consider r%gularized least squares problem of minimizing

L) =Y i=wix)?® + Allwll;
i=1

e This is ridge regression for p = 2 and Lasso forp = 1 S ower

é%jﬁesﬂt =

lwl|g = # of non-zero entries Iwllo = max{|w;]}

non-convex and Convex but Convex and
non-smooth non-smooth smooth
A o
_ [iwl\‘/ convex but
Fon) = lwll; [= non-smooth
2
“"J(\l “\P‘\\t/z: j_\

Pﬂx

Non-convex and non-smooth
functions are slower to optimize

More pointy level set
Iwl[, =1 gives sparser solution

Optimization: how do we solve Lasso?

* among many methods to find the solution, we will learn
coordinate descent method

* as an illustrating example, we show coordinate descent updates
on finding the minimum of a very simple function:

flx,y) = 5x% — 6xy + 5y2

f(x,y) = 52> — 6y + 5y°

1.5

1.5

How do we solve Lasso: min £ (w) + A||lw|[;?

w
e Coordinate descent

o input: training data §,;,, max # of iterations T

rain?
o initialize: w® = 0 € R?
e fort=1,....,T

e for j=1,...,d

o fix w(t) ...,w() and w7, .. w1 and

1° j—1]—l—(l > _d\ _

t t
wf wf
(t) (t)
Wi-1 Wi-1
wj(f) <~ argmin & w; + A w;
HER W=D W=D
]+1]+1
(=1) (t—=1)

w w

(L4 1) L 1

* This inner step is a one-dimensional optimization,
which is much easier to solve

Coordinate descent for (un-regularized) linear regression

e |let us understand what coordinate descent does on a simpler
problem of linear least squares, which minimizes

minimize,, Z(w) = || Xw — y||2

* note that we know that the optimal solution is
A T~ \—1wT
wrs = X'X)7 Xy
so we do not need to run any optimization algorithm

* we are solving this problem with coordinate descent as
a starting example to learn how coordinate descent works

« the main challenge we address is, how do we update wj(t) e R?

* |et us derive an analytical rule (i.e., closed form solution) for
updating wj(t), which generalizes to the case when we have Lasso

regularizer.

Coordinate descent for (un-regularized) linear regression

We consider the case when updating coordinate j = 1

min || Xw — Y||% = min (aw, — b)* + constant
W1€|R = WIE[R —~—

|| =Gl

W

W4
4 puy)((TX\'&\’\m~lwl' xlTC f\)(__g_(/d_q_)“(: -
X[t 4] KCoLed] /> K =
E(.{, 1 % = (A —b) 5 M@z:)::a&lk

X B}
| e A= XX

(¢t é_ﬂ
19 :)q'@-— X—CL‘W—CLSA C/K

X © X

Coordinate descent for (un-regularized) linear regression

» we will study the case j = 1, for now (other cases are almost identical)
« when updating wl(’), recall that
wl(t) «— arg min || Xw —y||3

wi
where w = [wy, wz(t_l) - ,wg_l)]T

o first step is to write the objective function in terms of the variable we are
optimizing over, that is wy:

Lw) = || X[10wy + X[.2 2 dlwy, - y||

where wy,, = [w{~ 1>, wi=hT

e we know from linear least squares that the minimizer is

wi? o« X[X DT XL 1T (y = X[2.2 0 dlwy,y)

17

* Coordinate descent applied to a quadratic loss

1.0 05 0.0 0.5 1.0

1.5

Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize,, £ (w) + A||lw]|; = || Xw — yllg + 1w,

« the goal is to derive an analytical rule for updating wj(t)’s

« let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w,

HX[l]Wl — (y X[:,2: d]Wzd +/1 ||W2d|1

constant

* hence, the coordinate descent update b0|Is down to
(oW —b)™
wl(t) < arg min ||X[: JdJw, — (y — X[:,2: d]w(t 1) H + 4w
w1

Slwy)

Convexity

this function is
e convex, and

e non-differentiable

like one of the three below

Jon)

Iy

to find the minimizer of f(w,), let’s study some properties
e for simplicity, we represent the objective function as

fw)) = (aw; — b)> + 4| w, |

depending on the values of a, b, and A, the function looks

250

200

150

100

19

2.5 5 7.5
| Wi

minimum

minimum

minimum

Convexity

Jx) = |x|

* for a non-differentiable function, gradient is not defined at some points,
for example at x = O for f(x) = | x|
* at such points, sub-gradient plays the role of gradient
* sub-gradient at a differentiable point is the same as the gradient
* sub-gradient at a non-differentiable point is a set of vector satisfying

ofx) = {g€RFY 2f0)+g"(y—x), forally e R’}
+1 forx >0
{ [—1,1] forxz=0
—1 forx <0

 for example, sub-gradientof | - | is d|x| =

20

Computing the sub-gradient

wl(t) = arg min
wER

X[: 1w, — (y X[:,2: d]w(t"l) H + A wy |

f(W1)

I];WO = (awl—b) +/1|WW+ constant Where a —\/X[J117X[: ,1], and
T X[z, 117 (y = X[:,2 - dws' D)

- VXL, 17X: 1]
Ot = 2ol rw~L) + A- 3w |
= § LalaW—L) ’?r\ WSO
2QocCamibYtA =1 iz Wzo

L’l&(ﬁwt -+4) —A 1&\C0L|,o&-—(,)«f-;l]
laCawt”(;) —*?\ < O

Computing the sub-gradient

wl(t) = arg min
wER

X[: 1w, — (y X[:,2: d]w(t"l) H + A wy |

f(W1)
e We have f(w;) = (aw; — b)? + 1| wy | + constants, with

. az\/X[: 17X[: .11, and
X[: 1 (y = X[: .2 : dwi)

) VXL 17X

. f(wl) is non-differentiable, and its sub-gradient is
df(wy) = Qalaw; — b) + A0|w,|

2a(awy —b) + A for wy; >0
| —2ab — A\, —2ab+)] for w; =0
2a(aw; —b) — A for wy <0

23

How do we find the minima?

¢ for convex differentiable functions, the minimum is achieved at points

where gradient is zero

80

e for convex non-differentiable functions, the minimum is achieved at

points where sub-gradient includes zero

10

Computing the sub-gradient for (aw, — b)* + 1| w, |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

Computing the sub-gradient for (aw; — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

Computing the sub-gradient for (aw; — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

Computing the sub-gradient for (aw; — b)* + | wy |

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

b A for 2ab >) o

W < 0 for — A< 2ab< N = —=<-
b A 2a a
o T for A < —2ab

2a2

How do we find the minimizer?

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

e case 1:
e 2a(aw; — b) + 1 = 0 for some w; > 0
 this happens when
—A+ 2ab
Wl — > O
2a?
* hence,]
1 a 2a?

minimum

if A < 2ab

* case 2:
e 2a(aw; — b) — A = 0 for some w; < 0
e this happens when

A+ 2ab

w = ——<0(\j
a2
[hence, -10 7.5 -5 A5 25 5 7.5 10
0 A |
Wl A Z + 2a2’ minimum
ifA < —2ab
e case 3:

e 0 € [-2ab— A, —2ab + /]
eandw; =0

* hence,
wl(t) < 0,

if —A <2ab < A

minimum
29

Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > \
w 0 for — A< 2ab< A
by 2 for A < —2ab

X[, 1 (y = X[: .2 : dlw_y)
VXL 17X]: 1]

250

where a = \/X[: A17X[: ,1],and b =

200
150

100

50 \/
7.5 10

2 4 6 8 -10 -7.5 -5 -2.5 2.54 5

Iy

30

minimum minimum

minimum

31

When does coordinate descent work?

» Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

A 7

-

e when coordinate descent has stopped, that means

S =0forallj € {1,...,d}

ox;

e this implies that the gradient V. f(x) = 0, which happens only
at minimum

When does coordinate descent work?

e Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck

7

X2
0
|

Flxp, %) = Bx; + 4%, + 12 + A x; — x,

32

When does coordinate descent work?

* then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-ddifferentiable convex function but has a

structure of f(x) = g(x) + 2 hi(x;) , with differentiable convex

function g(x) and coordinate-wise non-differentiable convex functions
hi(x;)’s, then coordinate descent converges to the global minima

"'
’ ‘\" X/

s

33

0
X
o.‘o,O,:' :;, 7
Yl

x2

%<.

;

0

T I
-2 0 2

\
)

(xl,x2)=(3x1+4x2+1)2+ﬁ|x1|+/1|x2| x1

Questions?

