Lecture 14:
Stochastic Gradient Descent

-What do we use in practice?

W

Machine Learning Problems

- Givendata: {(z;,v;)}, z;, €eRY 4, €R
_ 1 1
- Learning a model’s parameters: ;Z Zi(w) = ;2 C(fuX)s)

e Gradient Descent (GD):
one update takes cdn operations/time for some constant ¢>0

1 n
Wi < Wy — 77; 2 VZw,)
=1

e Stochastic Gradient Descent (SGD): one update takes cd operations/time

I; drawn uniform at

P _
Wi W= Vflz(wf) random from {1,...,n}

e SGD is an unbiased estimate of the GD

E[VLr, (w)] =

Stochastic Gradient Descent

Theorem
let Wit1 = wy — NVl (w)‘w_w f;fgjrvgnfrfiﬂ?{rfn . at n}
E[Ver, (w Zw Vi(w)

if ||wy— ws||3 <R and supmax||Vii(w)|z <G
0 2 w i 5

R
after T steps of SGD with stepsize 1, we achieve E[f(W) — Z(wx)] < — +

2Tn
: : : R nG RG R
Selecting the optimal stepsize, min—— +—=4/— for n = -
>0 2Tn 2 T GT
1 1 (Fixed optimal step size)
W= — 2 : w Convergence rate: 0<—> R G
_ t
r VT - +—=0
2Tn? 2

In practice use last iterate
(Inp) Taking the derivative of RHS to zero

We want to show that
T Follows from convexity of £(-)

1 1 - .
[Elf(?2 Wt) _ f(w*)l < [El? Z £(w,) — f(w*)] <+— and .Jensen s inequality
=1 i=1 (3 slides later)
T

1 Follows from

= ?; [E[f(wt) - K(W*)] linearity of expectation

< R 06 |

= 21 > <+— We are left to show this

Proof E[[Jwi1 — wal[3] = E[||w; — nVey, (w;) @w*H]
= E L et + 777 B lwo J —2 m%w]
e N~ ~

Pretfous Eror Gued ps1se €rvor 17 [th Ce- W]

:é- —27“@((»@?"@0»%))

) — —

(v J-“&‘eo
é(vacl 9ﬁ>p..

We Llte) + VJ-WC)T‘CW%“%) < Jtwy

Stochastic Gradient Descent

Proof

El| w1 — wsl|3] = E[|Jwy — nV ey, (wi) — w.||3]
< E[llw, — w31 + 7°G = 2n(£(w,) — £ (=)

o~ —L
00 We)-Lae) é(ﬂ'—ﬁllwt-wﬂ ~EL(l wtﬂ—w‘nx;(+ 725(_ > Y

Towey lﬁ-

f(uwc) oy (EEC (10 gty) th Ty @)l?

.___I.T/[4
2.

Stochastic Gradient Descent

Proof

Efl|wesr — wil[3] = E[|[we — Ve, (we) — w|[3]

= E[llwe — w.ll3] = 20E[V 1, (we) " (we — wi)] + 0" E[|[VL, (we) | [3]

< E[fJw; — w.3] = 2nE[l(w:) — L(ws)] +1*G

RV, (w)! (w; — w,)] = E|E[V{;, (we) ! (wy — w) |, wi, ..o e, wy—1]]

— E[Vﬁ(wt)T(wt — wy)]
> B[((wy) — ()]

T

> Ell(w) — b(w,)] <

1
o (Elllwr — will2] = Elllwrir — wil3] + Tn*G)
t=1 R TG

<
<ot 3

T
R TynG
We have shown: Z E[Z(w,) — £(wx)] < Z b

=1

Jensen’s inequality

t=1
R
< B Lne
2nT 2

Jensen’s inequality:
For any {wy, ..., wy} and a convex function £(-), we have

Lﬂ<%g%> S%gf(wt)

Mini-batch SGD

e Instead of one iterate, average B stochastic gradient together

e Advantages:
- Smaller variance: the variance of the stochastic gradient

is smaller by a factor of 1/y/B

- Parallelization: each gradient in the mini-batch
can be computed in parallel

1 n
If you have regularizer, — Z Z(w) + r(w), then update
n

i=1
with the stochastic gradient of the loss and gradient of the
regularizer

Questions?

Lecture 14:
Coordinate Descent

- How to solve non-smooth optimization like Lasso?

A . 2
Weasso = 4aIg H;IIR?‘Z “y o XW”2 + /lllwlll
W N

Jw)

W

Sparsity/Complexity tradeoff

1/p
- i i A P Py ... p
« ¢ ,-norm of a vector is defined as ||w||, = (CWII +py t+ +]de[)
e Consider r%gularized least squares problem of minimizing
L) =Y i=wix)?® + Allwll;

i=1
e This is ridge regression for p = 2 and Lasso forp = 1

lwl|g = # of non-zero entries +— podlegt — W]l = max{w;}
SPARSE l—I_I—l DENSE
non-convex and Convex but Convex and
non-smooth non-smooth smooth
A
convex but
Jw) = |lwll,
non-smooth
2 =1
Iwll, =
> Wl
Non-convex and non-smooth More pointy level set

functions are slower to optimize —) i
P Iwl[, =1 gives sparser solution

Optimization: how do we solve Lasso?

* among many methods to find the solution, we will learn
coordinate descent method

* as an illustrating example, we show coordinate descent updates
on finding the minimum of a very simple function:

flx,y) = 5x% — 6xy + 5y2

15 f(z,y) =5z* — 6y + 59°

1.0

Q
0.5 S

(4
e
4,]00

-0.5 el

-1.0 ; ""

—~1. .
—51.5 -1.0 -0.5 0.0 0.5 1.0 1.5

How do we solve Lasso: min £ (w) + A||lw|[;?

w
e Coordinate descent

o input: training data §,;,, max # of iterations T

rain?
o initialize: w® = 0 € R?
e fort=1,....,T

e for j=1,...,d

o fix w(t) ...,w() and w7, .. w1 and

1° j—1]—l—(l > _d\ _
Wl(t) Wl(t)
(t) (t)
]_ J_

wj(f) <~ argmin, & KW]"k + A sz’
wl=D 1)

]+1]+1
(t—1) (t—1)
w w
d d
(L7 1) L

* This inner step is a one-dimensional optimization,
which is much easier to solve

Coordinate descent for (un-regularized) linear regression

e |let us understand what coordinate descent does on a simpler
problem of linear least squares, which minimizes

minimize , £ (w) = || Xw — yllg
* note that we know that the optimal solution is

A T~ \— 1y T

wrg = X'X)7' Xy

so we do not need to run any optimization algorithm

* we are solving this problem with coordinate descent as
a starting example to learn how coordinate descent works

« the main challenge we address is, how do we update wj(t) e R?

m—

* |et us derive an analytical rule (i.e., closed form solution) for
updating wj(t), which generalizes to the case when we have Lasso

regularizer.

Coordinate descent for (un-regularized) linear regression

We consider the case when updating coordinate j = 1

min || Xw — y||2 = min (aw, — b)* + constant

1] 2 || Aoy T Xe 2 9550,
\ Xe1l- Hi
! = - 2
(\ g
| >

1

Xa,a:]T X)W 2 W, - AC; :lJT(¥ —Xes, 1) h{)&))
) @0) € Guwsaf

Coordinate descent for (un-regularized) linear regression

» we will study the case j = 1, for now (other cases are almost identical)
« when updating wl(’), recall that
wl(t) «— arg min || Xw —y||3

wi
where w = [wy, wz(t_l) - ,wg_l)]T

o first step is to write the objective function in terms of the variable we are
optimizing over, that is wy:

Lw) = || X[10wy + X[.2 2 dlwy, - y||

where wy,, = [w{~ 1>, wi=hT

e we know from linear least squares that the minimizer is

wi? o« X[X DT XL 1T (y = X[2.2 0 dlwy,y)

17

* Coordinate descent applied to a quadratic loss

1.0 05 0.0 0.5 1.0

1.5

Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize,, £ (w) + A||lw]|; = || Xw — yllg + 1w,

« the goal is to derive an analytical rule for updating wj(t)’s

« let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w,

2
HX[: dlw, — (y=X[:.2: d]Wz;d)H2 + (1w |+ lwaglly)

constant

* hence, the coordinate descent update boils down to

2
wl(t) < arg min ||X[: Alw, — (y X[:.,2: d]w(t 1))‘ + Alwy|
" 2 %m'-s%wa@/l.

Slwy)

Convexity

this function is
e convex, and

e non-differentiable

like one of the three below

Jon)

Iy

to find the minimizer of f(w,), let’s study some properties
e for simplicity, we represent the objective function as

fw)) = (aw; — b)> + 4| w, |

NV

depending on the values of a, b, and A, the function looks

250

200

150

100

19

2.5 5 7.5
| Wi

minimum

minimum

minimum

Convexity
() = |x|

* for a non-differentiable function, gradient is not defined at some points,
for example at x = O for f(x) = | x|
* at such points, sub-gradient plays the role of gradient
* sub-gradient at a differentiable point is the same as the gradient
* sub-gradient at a non-differentiable point is a set of vector satisfying

ofx) = {g€RFY 2f0)+g"(y—x), forally e R’}
{ +1 forx >0

a—

[—1,1] forxz=0

—1 forxz <O

 for example, sub-gradientof | - | is d|x| =

20

Computing the sub-gradient

wl(t) = arg min
wER

|X[: Jlwy — (y X[:,2: d]w(t"l) H + A wy |

f(W1)

fw) = (aw; — b)*> + A|wy| + constant ~ Where a =\/X[' J17X[: ,1], and
X[10y = X[: 52 2 dIwss)

oftw) = 25 (anL) +A M| b=

2a(owb)*A WSO
Dol + A1) YO
*[2ub-3, 2altA]

’MCOM r-!j) ,_/’\ WD

VXL, 17X: 1]

Computing the sub-gradient

wl(t) = arg min
wER

X[: 1w, — (y X[:,2: d]w(t"l) H + A wy |

f(W1)
e We have f(w;) = (aw; — b)? + 1| wy | + constants, with

. az\/X[: 17X[: .11, and
X[: 1 (y = X[: .2 : dwi)

) VXL 17X

. f(wl) is non-differentiable, and its sub-gradient is
df(wy) = Qalaw; — b) + A0|w,|

2a(awy —b) + A for wy; >0
| —2ab — A\, —2ab+)] for w; =0
2a(aw; —b) — A for wy <0

23

How do we find the minima?

¢ for convex differentiable functions, the minimum is achieved at points

where gradient is zero

80

e for convex non-differentiable functions, the minimum is achieved at

points where sub-gradient includes zero

10

Computing the sub-gradient for (aw; — b)Y’ + 1| wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

C&*S i: 7?1«::4 Wt>0.
S = e Volown-D4] = O LSO

W, = 2 oA >’O

Computing the sub-gradient for (aw; — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

Cese L.
ZAC&W\'—Q)~/}:O, & L, L0

zae%

b= Lo

4 = LtA
\\ fgl 2244 L O , theu 29:2

Computing the sub-gradient for (aw; — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

(e S WEe ik 2 AL D & 2alt

T} "‘/{_é 9-&‘9_4_;\ /.6&’”‘ L\/‘GD:—O

Computing the sub-gradient for (aw; — b)* + | wy |

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

b A for 2ab > A o
W < 0 for — A< 2ab< A <=>2_—612ng7

b A

24+ 525 for A < —2ab

a 2a2 te) Lg,w‘e’:—&

Wi

How do we find the minimizer?

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+)] for w; =0
2a(awy —b) — A for wy <0

e case 1:
e 2a(aw; — b) + 1 = 0 for some w; > 0
 this happens when
—A+ 2ab
Wl — > O
2a?
* hence,]
1 a 2a?

minimum

if A < 2ab

* case 2:
e 2a(aw; — b) — A = 0 for some w; < 0
e this happens when

A+ 2ab

w = ——<0(\j
a2
[hence, -10 7.5 -5 A5 25 5 7.5 10
0 A |
Wl A Z + 2a2’ minimum
ifA < —2ab
e case 3:

e 0 € [-2ab— A, —2ab + /]
eandw; =0

* hence,
wl(t) < 0,

if —A <2ab < A

minimum
29

Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > \
w 0 for — A< 2ab< A
by 2 for A < —2ab

X[, 1 (y = X[: .2 : dlw_y)
VXL 17X]: 1]

250

where a = \/X[: A17X[: ,1],and b =

200
150

100

50 \/
7.5 10

2 4 6 8 -10 -7.5 -5 -2.5 2.54 5

Iy

30

minimum minimum

minimum

31

When does coordinate descent work?

» Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

A 7

-

e when coordinate descent has stopped, that means

S =0forallj € {1,...,d}

ox;

e this implies that the gradient V. f(x) = 0, which happens only
at minimum

When does coordinate descent work?

e Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck

7

X2
0
|

Flxp, %) = Bx; + 4%, + 12 + A x; — x,

32

When does coordinate descent work?

* then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-ddifferentiable convex function but has a

structure of f(x) = g(x) + 2 hi(x;) , with differentiable convex

function g(x) and coordinate-wise non-differentiable convex functions
hi(x;)’s, then coordinate descent converges to the global minima

"'
’ ‘\" X/

s

33

0
X
o.‘o,O,:' :;, 7
Yl

x2

%<.

;

0

T I
-2 0 2

\
)

(xl,x2)=(3x1+4x2+1)2+ﬁ|x1|+/1|x2| x1

Questions?

