# Lecture 13: <br> Gradient Descent for linear regression 

## Gradient descent for linear regression

- For linear regression, we have $w^{*}=\arg \min _{w \in \mathbb{R}^{d}} \underbrace{\|\mathbf{y}-\mathbf{X} w\|_{2}^{2}}_{f(w)}$
- Gradient Descent:
- Initialize: $w_{0}=0$
- For $t=0,1,2, \ldots$
- $w_{t+1} \leftarrow w_{t}-\eta \cdot \nabla_{w} f\left(w_{t}\right)$

$$
\begin{aligned}
\nabla f\left(w_{t}\right) & =-2 \mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X} w_{t}\right) \\
w_{t+1} & =w_{t}+\eta 2 \mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X} w_{t}\right)=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right) w_{t}+2 \eta \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Let the least-squares solution be $w^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$

$$
\begin{aligned}
w_{t+1}-w^{*} & =\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right) w_{t}+2 \eta \mathbf{X}^{T} \mathbf{y}-w^{*} \\
& =\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)\left(w_{t}-w^{*}\right)+2 \eta \mathbf{X}^{T} \mathbf{y}-2 \eta \mathbf{X}^{T} \mathbf{X} w^{*} \\
& =\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)\left(w_{t}-w^{*}\right)
\end{aligned}
$$

Gradient Descent (GD) for Linear Regression (LR)

- We use this analytical derivation of GD for LR to understand how the choice of step size $\eta$ impacts the algorithm

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \Longrightarrow w_{t+1}-w^{*}=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)\left(w_{t}-w^{*}\right) \\
&=\left(\mathbb{I}-2 \eta x^{\top} x\right)\left(\mathbb{I}-2 \eta x^{\top} x\right) \\
& \vdots \\
&=\left(\mathbb{I}-2 \eta x^{\top} x\right)^{t+1} \cdot \underbrace{\left(w_{e-1}-w^{*}\right)}_{\text {init }} \\
&\text { err } \left.-w^{*}\right)
\end{aligned}
$$

## Gradient descent for linear regression

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \Longrightarrow w_{t+1}-w^{*}=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)\left(w_{t}-w^{*}\right) \\
&=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)^{2}\left(w_{t-1}-w^{*}\right) \\
& \vdots \\
&=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)^{t+1}\left(w_{0}-w^{*}\right)
\end{aligned}
$$

In one dimension, $\overbrace{2 \mathbf{X}^{T} \mathbf{X}}=\overbrace{a}^{0}$ is a scalar, and $w_{t+1}-w^{*}=(1-\eta a)^{t+1}\left(w_{0}-w^{*}\right)$


Gradient descent for linear regression

$$
w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \Longrightarrow w_{t+1}-w^{*}=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)_{d}^{t+1}\left(w_{0}-w^{*}\right)
$$

$$
\left\{\left(q_{i}, D_{i i}\right)\right\}_{i=r}^{d}
$$

- In multi dimensions, eigenvalues of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ gre important
- Let the eigenvalue decomposition of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ be $Q^{-1} D Q$,
- Where $D$ is a diagonal matrix with Eigen values $\left\{D_{i i}\right\}_{i=1}^{d}$ in the diagonal
- And $Q$ is an orthogonal matrix, with each Eigen vector as in a row

$$
\begin{aligned}
& \text { II }-2 \eta x^{\tau} x=Q^{-1} D Q, \quad D=\left[\begin{array}{lll}
D_{1} & & \\
& \ddots & \\
& \ddots D_{d d}
\end{array}\right], Q=\left[\begin{array}{l}
q_{c}^{\top} \\
\varepsilon_{2}^{\tau} \\
\\
\end{array}\right] \\
& \omega_{\text {thc }}-\omega^{*}=\underbrace{Q^{-1} D \not Q^{\prime} \times \cos ^{-1} D \not Q \times \cdots \times Q^{4} D Q_{1}}_{++1} \cdot\left(\omega_{0}-\omega^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
11 & D_{1}^{t+1} & & \\
& \ddots & \\
& & O_{0 d}^{t+1}
\end{array}\right]}
\end{aligned}
$$

## Gradient descent for linear regression

$$
w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \Longrightarrow w_{t+1}-w^{*}=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)^{t+1}\left(w_{0}-w^{*}\right)
$$

- In multi dimensions, eigenvalues of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ are important
- Let the eigenvalue decomposition of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ be $Q^{-1} D Q$

Then, $w_{t+1}-w^{*}=\left(Q^{-1} D Q\right)^{t+1}\left(w_{0}-w^{*}\right)$

$$
\begin{aligned}
& =\underbrace{Q^{-1} D Q Q^{-1} D Q \cdots Q^{-1} D Q\left(w_{0}-w^{*}\right)}_{t+1 \text { times }} \\
& =Q^{-1} D^{t+1} Q\left(w_{0}-w^{*}\right) \\
Q\left(w_{t+1}-w^{*}\right) & =D^{t+1} Q\left(w_{0}-w^{*}\right)
\end{aligned}
$$

- This defines a series of equations capturing how the error evolves in Directions defined by the rows of $Q$, which are the Eigen vectors of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$


## Gradient descent for linear regression

$$
Q\left(w_{t+1}-w^{*}\right)=D^{t+1} Q\left(w_{0}-w^{*}\right)
$$

- Where eigenvalue decomposition of $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ is $Q^{-1} D Q$
- Let $Q=\left[\begin{array}{ccc}- & q_{1}^{T} & - \\ - & q_{2}^{T} & - \\ & \vdots & \end{array}\right]$, then the above multi-dimensional dynamics
of GD can be decomposed into multiple 1-d dynamics we saw before
- The eigenvector-eigenvalue pairs $\left\{\left(q_{i}, D_{i i}\right)\right\}_{i=1}^{d}$ of the matrix $\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}$ determines the behavior of gradient descent
- In direction $q_{1}$, the error decreases multiplicatively according to $D_{11}$

Error in direction $q_{1} \longrightarrow q_{1}^{T}\left(w_{t+1}-w^{*}\right)=D_{11}^{t+1} q_{1}^{T}\left(w_{0}-w^{*}\right)$

$$
q_{2}^{T}\left(w_{t+1}-w^{*}\right)=D_{22}^{t+1} q_{2}^{T}\left(w_{0}-w^{*}\right)
$$

## Gradient descent for linear regression

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta \nabla f\left(w_{t}\right) \Longrightarrow w_{t+1}-w^{*}=\left(\mathbf{I}-2 \eta \mathbf{X}^{T} \mathbf{X}\right)^{t+1}\left(w_{0}-w^{*}\right) \\
& \Longrightarrow Q\left(w_{t+1}-w^{*}\right)=D^{t+1} Q\left(w_{0}-w^{*}\right) \\
& q_{1}^{T}\left(w_{t+1}-w^{*}\right)=D_{11}^{t+1} q_{1}^{T}\left(w_{0}-w^{*}\right) \\
& q_{2}^{T}\left(w_{t+1}-w^{*}\right)=D_{22}^{t+1} q_{2}^{T}\left(w_{0}-w^{*}\right)
\end{aligned}
$$

- For example suppose, the step size $\eta$ is chosen such that

In direction $q_{1} \quad \ln$ direction $q_{2}$

$$
\begin{array}{cc}
0<D_{11}<1 & -1<D_{22}<0 \\
0.9 & -0.5
\end{array}
$$




## Gradient descent for logistic regression

- Now we know how to find the global minimum of a logistic regression problem, numerically

Loss function: Conditional Likelihood

$$
\begin{aligned}
&\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \quad x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in\{-1,1\} \\
& \widehat{w}_{M L E}=\arg \max _{w} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right) \quad P(Y=y \mid x, w)=\frac{1}{1+\exp \left(-y w^{T} x\right)} \\
&= \arg \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} x_{i}^{T} w\right)\right) \\
& \nabla f(w)=\sum_{i=1}^{n} \frac{1}{1+\exp \left(-y_{i} x_{i}^{T} w\right)} \exp \left(-y_{i} x_{i}^{T} w\right)\left(-y_{i} x_{i}\right) \\
&
\end{aligned}
$$

## What is known for Gradient descent

- $f(\cdot)$ is $L$-smooth if $\|\nabla f(w)-\nabla f(v)\|_{2} \leq L\|w-v\|_{2}$ for all $w, v \in \mathbb{R}^{d}$
. $f(\cdot)$ is $\mu$-strongly convex if $f(w) \geq f(v)+\nabla f(v)^{T}(w-v)+\frac{\mu}{2}\|w-v\|_{2}^{2}$
- For $L$-smooth functions, with a fixed step size $\eta<1 / L$
- if $f(w)$ is convex,

$$
f\left(w_{t}\right)-f\left(w^{*}\right) \leq \frac{\left\|w_{0}-w^{*}\right\|_{2}^{2}}{2 \eta t} \cong \frac{R \cdot L}{2 \cdot t}=O\left(\frac{1}{\epsilon}\right)
$$

- if $f(w)$ is $\mu$-strongly convex,

$$
\begin{array}{l}
\text { v) is } \mu \text {-strongly convex, } \\
f\left(w_{t}\right)-f\left(w^{*}\right) \leq\left(\frac{1}{L}\right. \\
\left.1-\hbar^{\hbar} \mu\right)^{t} \\
\underbrace{f\left(w_{0}\right)-f\left(w^{*}\right)})
\end{array} \underbrace{-\frac{\mu}{L} \cdot t})
$$

- Gradient Descent is oftentimes called full-batch gradient descent to differentiate it from stochastic gradient descent, which uses only a (randomly chosen) subset of training data at each iteration
- In practice, people use Stochastic Gradient Descent (SGD).

Questions?
Mode\{ $\begin{cases}\text { Model: } & \omega^{2} x+b=f_{\omega, b}(x), ~ C N N, D N N \\ \text { loss:. } & \text { Qudratic, Ridfo, Lasso, logistic }\end{cases}$
Afforichm: $\nabla_{w}=0, G D, S G D, C G D$.
$2,27$.
$\left[\begin{array}{l}\text { Lineadild } \\ \text { Quedvatic or R2fe }\end{array}\right.$

# Stochastic Gradient Descent 

-What do we use in practice?

## Machine Learning Problems

- Given data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- Learning a model's parameters:

$$
\begin{aligned}
& x_{i} \in \mathbb{R}^{d} \quad y_{i} \in \mathbb{R} \\
& : \quad \frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f_{w}\left(x_{i}\right), y_{i}\right)
\end{aligned}
$$

- Gradient Descent (GD): one update takes $c d n$ operations/time for some constant $c>0$

$$
w_{t+1} \leftarrow w_{t}-\eta \frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{i}\left(w_{t}\right)
$$

- Stochastic Gradient Descent (SGD): one update takes $c d$ operations/time

$$
w_{t+1} \leftarrow w_{t}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right) \quad \begin{aligned}
& I_{t} \text { drawn uniform at } \\
& \text { random from }\{1, \ldots, n\}
\end{aligned}
$$

- SGD is an unbiased estimate of the GD

$$
\mathbb{E}\left[\nabla \ell_{I_{t}}(w)\right]=\frac{1}{n} \cdot \sum_{i=1}^{n} \nabla \ell_{i}(w)=G D
$$

## Stochastic Gradient Descent $\forall(\eta)$

化 $[\quad] \leqq \min _{\eta} H(9)=$

## Theorem

$$
\begin{aligned}
& \text { Let } \quad w_{t+1}=w_{t}-\left.\eta \nabla_{w} \ell_{I_{t}}(w)\right|_{w=w_{t}} \quad \begin{array}{l}
I_{t} \text { drawn uniform at } \\
\text { random from }\{1, \ldots, n\}
\end{array} \quad \text { so that } \\
& \mathbb{E}\left[\nabla \ell_{I_{t}}(w)\right]=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{i}(w)=: \underline{\nabla \ell(w)} \\
& \text { If } \quad\left\|w_{0}-w_{*}\right\|_{2}^{2} \leq R \quad \text { and } \quad \sup _{w} \max _{i}\left\|\nabla \ell_{i}(w)\right\|_{2}^{2} \leq G \quad \text { then } \\
& \mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{R}{2 T \eta_{k}}+\frac{h G}{2} \leq \sqrt{\frac{R G}{T}}=0\left(\frac{1}{\sqrt{T}}\right)=\sqrt{\frac{R}{G T}} \\
& \begin{array}{l}
\bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t} \quad \text { Convergence rate: } O\left(\frac{1}{\sqrt{T}}\right)
\end{array} \begin{array}{c}
\text { (Fixed optimal step size) } \\
-\frac{R}{2 T \eta^{2}}+\frac{G}{2}=0
\end{array}
\end{aligned}
$$

(In practice use last iterate)
Taking the derivative of RHS to zero

We want to show that

$$
\begin{aligned}
& \mathbb{E}\left[\ell\left(\frac{1}{T} \sum_{t=1}^{T} w_{t}\right)-\ell\left(w_{*}\right)\right] \leq \mathbb{E}\left[\frac{1}{T} \sum_{i=1}^{T} \ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \\
& \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \\
& \leq \frac{R}{2 T \eta}+\frac{\eta G}{2} \\
& \text { Proof } \mathbb{E}\left[\left\|w_{t+1}-w_{*}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|w_{\omega_{t+1}}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2}\right] \\
& =\underbrace{\mathbb{E}\left[1 \omega_{e+1}-\omega_{-d} l_{2}^{2}\right]}-2 \eta \mathbb{E}\left[\nabla^{\nabla} I_{e}\left(\omega_{t}\right)^{\top} \cdot\left(\omega_{k}-\omega_{* e}\right)\right] \\
& +\eta^{2} \mathbb{E}[\underbrace{\left\|\nabla l_{I_{e}}\left(\omega_{c}\right)\right\|_{2}^{2}}_{G}] \\
& \text { (1) Guvexify } \\
& l(\cdot) \\
& \begin{array}{c}
\operatorname{l}\left(\omega^{*}\right) \\
1 / V
\end{array} \\
& l_{i}\left(W_{c}\right)+\nabla \rho_{i}\left(W_{t}\right)^{\top}\left(W_{e}-W_{t}\right)
\end{aligned}
$$

## Stochastic Gradient Descent

Proof

$$
\begin{aligned}
\mathbb{E}\left[\left\|w_{t+1}-w_{*}\right\|_{2}^{2}\right] & =\mathbb{E}\left[\left\|w_{t}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2}\right] \\
& \leq \mathbb{E}\left[\left\|w_{t}-w_{*}\right\|_{2}^{2}\right]+\eta^{2} G-2 \eta\left(\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right)
\end{aligned}
$$

## Stochastic Gradient Descent

## Proof

$$
\begin{aligned}
& \mathbb{E}\left[\left\|w_{t+1}-w_{*}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|w_{t}-\eta \nabla \ell_{I_{t}}\left(w_{t}\right)-w_{*}\right\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\left\|w_{t}-w_{*}\right\|_{2}^{2}\right]-2 \eta \mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right]+\eta^{2} \mathbb{E}\left[\left\|\nabla \ell_{I_{t}}\left(w_{t}\right)\right\|_{2}^{2}\right] \\
& \leq \mathbb{E}\left[\left\|w_{t}-w_{*}\right\|_{2}^{2}\right]-2 \eta \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right]+\eta^{2} G \\
& \begin{aligned}
\mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\nabla \ell_{I_{t}}\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right) \mid I_{1}, w_{1}, \ldots, I_{t-1}, w_{t-1}\right]\right] \\
& =\mathbb{E}\left[\nabla \ell\left(w_{t}\right)^{T}\left(w_{t}-w_{*}\right)\right] \\
& \geq \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \\
\sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \leq & \frac{1}{2 \eta}\left(\mathbb{E}\left[\left\|w_{1}-w_{*}\right\|_{2}^{2}\right]-\mathbb{E}\left[\left\|w_{T+1}-w_{*}\right\|_{2}^{2}\right]+T \eta^{2} G\right) \\
\leq & \frac{R}{2 \eta}+\frac{T \eta G}{2}
\end{aligned}
\end{aligned}
$$

We have: $\quad \sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \leq \frac{R}{2 \eta}+\frac{T \eta G}{2}$

$$
\mathbb{E}\left[\ell(\bar{w})-\ell\left(w_{*}\right)\right] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\ell\left(w_{t}\right)-\ell\left(w_{*}\right)\right] \quad \bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}
$$

Jensen's inequality:
For any $\left\{w_{1}, \ldots, w_{T}\right\}$ and a convex function $\ell(\cdot)$, we have

$$
\ell\left(\frac{1}{T} \sum_{t=1}^{T} w_{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \ell\left(w_{t}\right)
$$

## Mini-batch SGD

- Instead of one iterate, average B stochastic gradient together
- Advantages:
- Smaller variance: the variance of the stochastic gradient is smaller by a factor of $1 / \sqrt{B}$
- Parallelization: each gradient in the mini-batch can be computed in parallel
. If you have regularizer, $\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(w)+r(w)$, then update
with the stochastic gradient of the loss and gradient of the regularizer


## Sparsity/Complexity tradeoff

- $\ell_{p}$-norm of a vector is defined as $\|w\|_{p} \triangleq\left(w_{1}^{p}+w_{2}^{p}+\cdots+w_{d}^{p}\right)^{1 / p}$
- Consider regularized least squares problem of minimizing

$$
\mathscr{L}(w)=\sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}+\lambda\|w\|_{p}^{p}
$$

- This is ridge regression for $p=2$ and Lasso for $p=1$
$\|w\|_{0}=\#$ of non-zero entries

$$
\|w\|_{\infty}=\max \left\{w_{i}\right\}
$$


convex but non-smooth

Questions?

