Logistics:

- HW0 graded, for regrade request submit it through GradeScope within 7 days from release of grade.
- HW1 due Tuesday Jan 25th midnight

Lecture 9: Simple variable selection: LASSO for sparse regression

- Yet another hyper-parameter/family of model classes, but with a special property
 - # of features in polynomial regression
 - Regularization coefficient λ for ridge regression
 - Regularization coefficient λ for LASSO

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - A vector w is said to be k-sparse if at most k entries are non-zero
 - We are interested in k-sparse w with $k \ll d$
 - Why do we prefer sparse vector w in practice?

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(w) = 100 Billion, each prediction $w^T x$ is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w

$$\widehat{y}_i = \widehat{w}_{LS}^T x_i$$

$$= \square$$

$$= \sum_{j=1}^{d} \widehat{w}_{LS}[j] \times x_{i}[j] = \sum_{j:w_{LS}[j]\neq 0} \widehat{w}_{LS}[j] \times x_{i}[j]$$

Computational complexity decreases from 2d to 2k for k-sparse $\widehat{w}_{\mathrm{LS}}$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

 How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size

Single Family

Year built

Last sold price

Last sale price/sqft

Finished sqft Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type
Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

Finding best subset of features that explain the outcome/label: Exhaustive

- Try all subsets of size 1, 2, 3, ... and one that minimizes validation error
 - Problem?
 - Any Ideas?

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Forward Greedy

1:
$$T \leftarrow \emptyset$$

2: For
$$j = 1,...,k$$
 do

3:
$$j^* \leftarrow \arg\min_{\ell} \min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{j \in T \cup \{\ell\}} w[j] \times x_i[j] \right)^2$$

4:
$$T \leftarrow T \cup \{j^*\}$$

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important

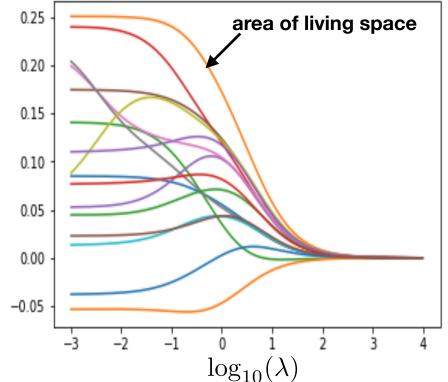
Lots of other variants, too.

Finding best subset: Regularize

Recall that Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

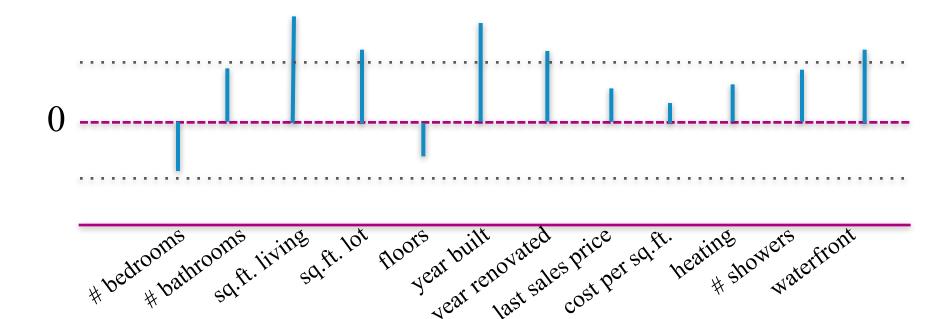
 w_i 'S area of living s



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

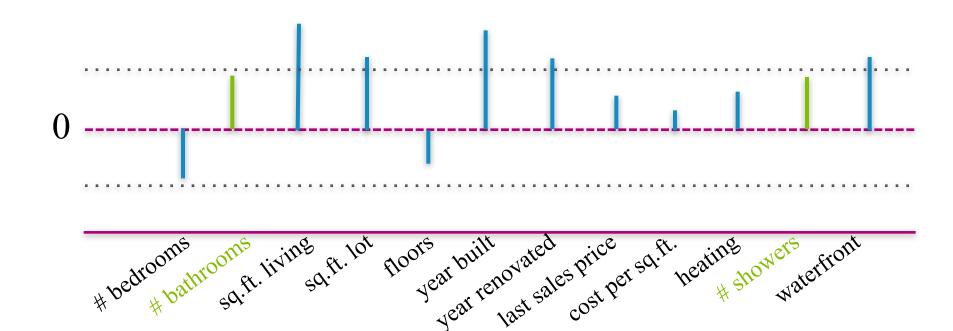
- Why don't we just set small ridge coefficients to 0?
 - Any issues?



Thresholded Ridge Regression

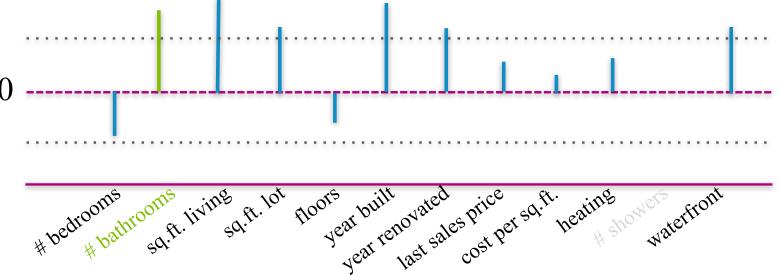
$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- Consider two related features (bathrooms, showers)
- Consider w[bath] = 1 and w[shower] = 1, and w[bath] = 2 and w[shower] = 0, which one does ridge regression choose? (assuming #bathroom=#showers in every house)



Thresholded Ridge Regression

- Consider two related features (bathrooms, showers)
- Issue with thresholded ridge regression is that ridge regression prefers balanced weights between similar features
- What if we **didn't** include showers? Weight on bathrooms increases, and it should have been selected.
- We want a feature selection scheme that selects one of (#bathroom) or (#showers) automatically, using the fact that if you delete #showers #bathroom is an important feature



• There is a better regularizer for sparse regression, that can perform the feature selection automatically.

Ridge vs. Lasso Regression

Recall Ridge Regression objective:

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- sensitivity of a model w is measured in squared ℓ_2 norm $\|w\|_2^2$
- A principled method to get sparse model is Lasso with regularized objective:

$$\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2 + \lambda ||w||_1$$

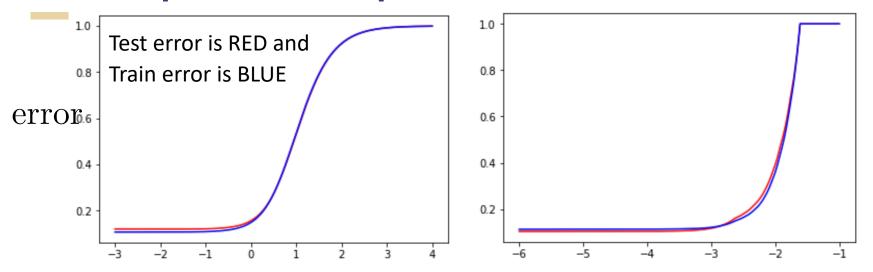
• sensitivity of a model w is measured in \mathcal{C}_1 norm:

$$||w||_1 = \sum_{j=1}^d |w[j]|$$

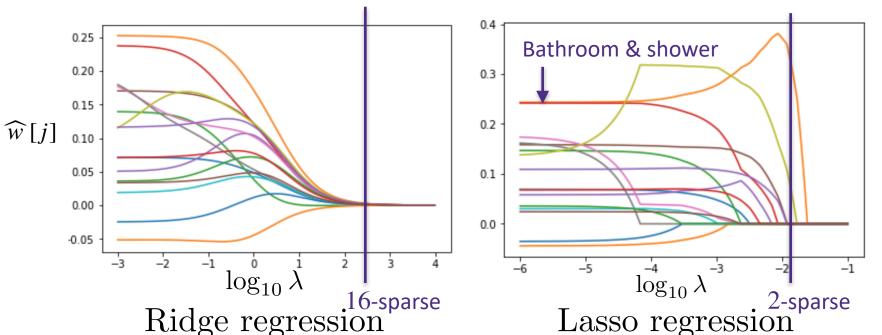
$$\mathcal{C}_p\text{-norm of a vector } w \in \mathbb{R}^d \text{ is}$$

$$\|w\|_p \triangleq \Big(\sum_{j=1}^d |w[j]|^p\Big)^{1/p}$$

Example: house price with 16 features



• Regularization path for Lasso shows that weights drop to exactly zero as λ increases



Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. **Model selection**: choose λ based on cross validation error
 - 2. **Feature selection**: keep only those features with non-zero (or not-too-small) parameters in w at optimal λ
 - 3. **retrain** with the sparse model and $\lambda = 0$

why do we need to retrain?

Example: piecewise-linear fit

We use Lasso on the piece-wise linear example

$$h_0(x) = 1$$

 $h_i(x) = [x + 1.1 - 0.1i]^+$

Step 3: retrain

minimize_w $\mathcal{L}(w)$

 $\lambda = 0$

Step 1: find optimal
$$\lambda^*$$

minimize W $\mathcal{L}(w) + \lambda \|w\|_1$

step 2: retrain minimize W $\mathcal{L}(w) + \lambda \|w\|_1$

$$W_j$$

de-biasing (via re-training) is critical!

but only use selected features

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

Penalized Least Squares

Regularized optimization:

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

Ridge: $r(w) = ||w||_2^2$

Lasso: $r(w) = ||w||_1$

• For any $\lambda^* \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu^* \geq 0$ such that the solution of the constrained optimization, \widehat{w}_c , is the same as the solution of the regularized optimization, \widehat{w}_r , where

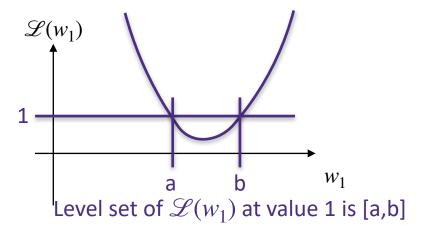
$$\widehat{w}_C = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \mu^*$

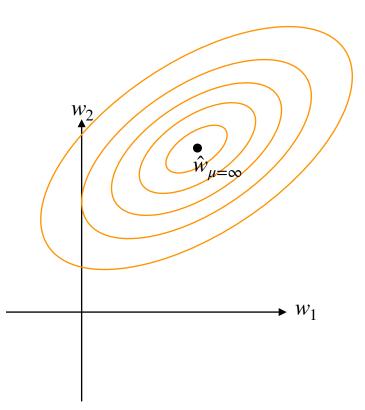
• so there are pairs of (λ, μ) whose optimal solution \widehat{w}_r are the same for the regularizes optimization and constrained optimization

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- the **level set** of a function $\mathcal{L}(w_1, w_2)$ is defined as the set of points (w_1, w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{u=\infty} = \hat{w}_{\mathrm{LS}}$

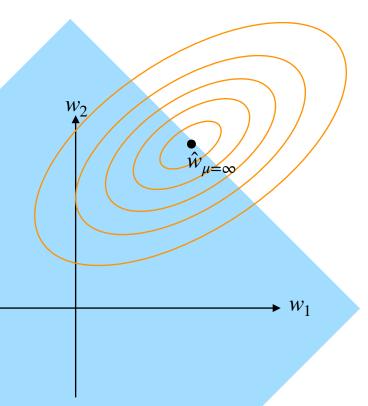
1-D example with quadratic loss





minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- as we decrease μ from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{ (w_1,w_2) \,\middle|\, |w_1| + |w_2| \le \mu \right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution



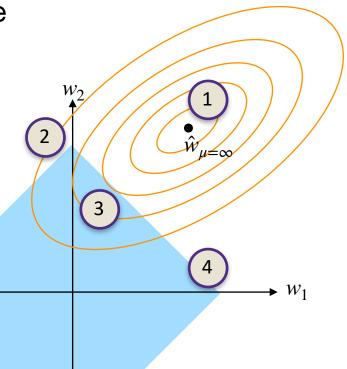
feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

• As μ decreases (which is equivalent to increasing regularization λ) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is ?

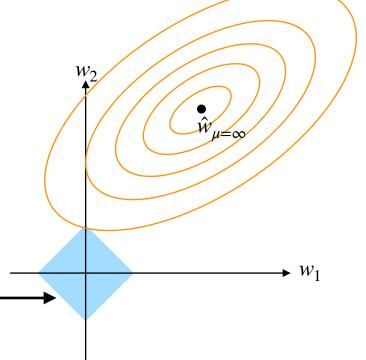


feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$ —

$$\operatorname{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

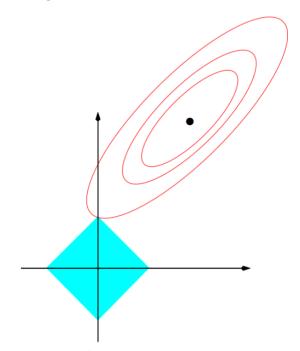
- For small enough μ , the optimal solution becomes **sparse**
- This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes



feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

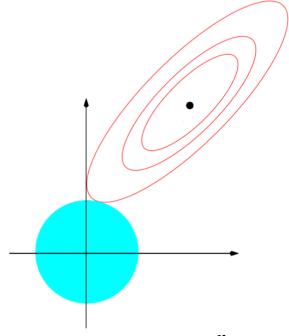
Penalized Least Squares

- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- ullet Ridge regression finds dense solutions, as L_2 -ball is "smooth"



 $\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

subject to $||w||_1 \le \mu$



$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_2^2 \le \mu$

Questions?