Logistics:

- HWO graded, for regrade request submit it through GradeScope within 7 days
from release of grade.

- HW1 due Tuesday Jan 25th midnight

Lecture 9:
Simple variable selection:
LASSO for sparse regression

- Yet another hyper-parameter/family of model classes,
but with a special property
- # of features in polynomial regression
- Regularization coefficient A for ridge regression

- Regularization coefficient A for LASSO w



SparSIty ’&}LS = arg mlnz (yz — x?w)2
1=1
= Vector w is sparse, if many entries are zero

= Avector w is said to be k-sparse if at most k entries are
non-zero

- We are interested in k-sparse w with k << d
= Why do we prefer sparse vector w in practice?



Sparsity WL =argmin Yy (y; — xq;Tw)2
1=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w
A T

Yi= Wig i

d N~ o o
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Computational complexity decreases from 2d to 2k for k-sparse W | q



SparSIty Wrs = arg minz (yi —
1=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Tw)2

)

Lot size

Single Family
Year built

Last sold price

Dishwasher
Garbage disposal
Microwave
Range / Oven

Last sale price/sqft

Refrigerator

Finished sqft
Unfinished sqgft

Washer
Dryer

Finished basement sqft Laundry location

# floors Heating type
Flooring types Jetted Tub
Parking type Deck
Parking amount Fenced Yard
) B . Cooling Lawn
How do we find “best” subset of [Heating | Garden
features useful in predicting the Exterior materials Sprinkler System
price among all possible Roof type style

combinations?



Finding best subset of features that
explain the outcome/label: Exhaustive

 Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error

 Problem?
* Any ldeas?



Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Forward Greedy
1: T« @
2:Forj=1,...,kdo

n 2
3: j* « arg min min ( . — ] X )
j*—argminmin ) (y— D, wljlx ¥l
i=1 JETU{ZL}
4: T « T U {j*}

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as important

L ots of other variants, too.



Finding best subset: Reqgularize

Recall that Ridge regression makes coefficients small

n

~ . 2

Wridge — al'g m,(;nz (yz - CE?U)) + )\HU)H%
1=1
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Thresholded Ridge Regression

n
AN . 2
Wridge — Ar'g mu%nz (yz - x?w) + )‘HwH%

1=1

- Why don’t we just set small ridge coefficients to 0?
* Any issues?
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Thresholded Ridge Regression

r&}'ridge — arg mu%nz (yz — x;l“w)z + )‘Hng
=1
- Consider two related features (bathrooms, showers)
. Consider w[bath] = 1 and w[shower]| = 1, and
w[bath] = 2 and w[shower] = 0,
which one does ridge regression choose?
(assuming #bathroom=#showers in every house)
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Thresholded Ridge Regression

- Consider two related features (bathrooms, showers)

* Issue with thresholded ridge regression is that
ridge regression prefers balanced weights between similar features

- What if we didn’t include showers? Weight on bathrooms increases, and it
should have been selected.

- We want a feature selection scheme that selects one of (#bathroom) or
(#showers) automatically,
using the fact that if you delete #showers #bathroom is an important feature
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» There is a better regularizer for sparse regression,
that can perform the feature selection automatically.



Ridge vs. Lasso Regression

* Recall Ridge Regression objective:

~ . 2
Wridge — AI'g mu%nz (yz — x?w) + )‘HwH%
i=1
. sensitivity of a model w is measured in squared £, norm ||w||3

* A principled method to get sparse model is Lasso with
regularized objective:

2
Wigsso = arg mmz —z;w) + A|w|)
=1

- sensitivity of a model w is measured in £; norm:

”W”l = ‘W[]] ‘ fp—normofavectorweRdis
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Example: house price with 16 features
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e Regularization path for Lasso shows that weights drop to exactly zero as A increases
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1. Model selection: choose A based on cross validation error

2. Feature selection: keep only those features with non-zero
(or not-too-small) parameters in w at optimal A

3. retrain with the sparse modeland A = 0

why do we need to retrain?



Example: piecewise-linear fit

ho(z)
* We use Lasso on the piece-wise linear example p,(x)

Step 1: find optimal A*
minimize,, L (w) + A||w||,

=1
= [z +1.1-0.14]"

Step 3: retrain

minimize,, Z£(w)
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Step 2: select features .
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A=10"8 A=10""* A=2x10"*
* de-biasing (via re-training) is critical!
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but only use selected features



Penalized Least Squares
Ridge : 7(w) = [Jw|[3 ~ Lasso : r(w) = ||w]|;

W, = arg minz (yi — x;rw)Q + Ar(w)

w
1=1



Penalized Least Squares

e Regularized optlmlzatlon

Ridge : r(w) = HwH2
Lasso : r(w) = ||w||1

e For any A* > 0O for which w, achieves the minimum, there exists a u* > 0 such that
the solution of the constrained optimization, WC, is the same as the solution of the

regularized optimization, W , where

W= argmmz (i—x'w)*  subjectto r(w) < u*
i=1

e so there are pairs of (4, #) whose optimal solution 717,, are the same
for the regularizes optimization and constrained optimization




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

« the level set of a function £ (w, w,) is defined

as the set of points (w;, w,) that have the same
function value

» the level set of a quadratic function is an oval
e the center of the oval is the least squares

. A N w2
solution w,_, = Wy g 4 .
1-D example with quadratic loss W<
L (wy)
1

»
L

| |
a b wi
Level set of £ (w;) at value 1 is [a,b]




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to ||w|; < u

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
Ll ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond Vﬁ‘;z
{(Wl,Wz)‘ (Wil + 1wy | <}

« when y is large enough such that [[Ww, - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| |||, < u} —>



Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

e As u decreases (which is equivalent to
increasing regularization A) the feasible
set (blue diamond) shrinks

* The optimal solution of the above e @
optimization is ? @

feasible set: {w € R? | Wil Lu}—>




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

For small enough 1, the optimal solution
becomes sparse

This is because the L-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

feasible set: {w € R?| ||w||, < u} —>




Penalized Least Squares

e Lasso regression finds sparse solutions, as L-ball is “pointy”

» Ridge regression finds dense solutions, as L,-ball is “smooth”

n n
C e . T 2 < v - T 2
minimize,, E (w X; — y,-) minimize,, Z,(W X — )’i)
i=1 i=1

subject to ||w|l, < u subject to ||w||§ < u



Questions?



