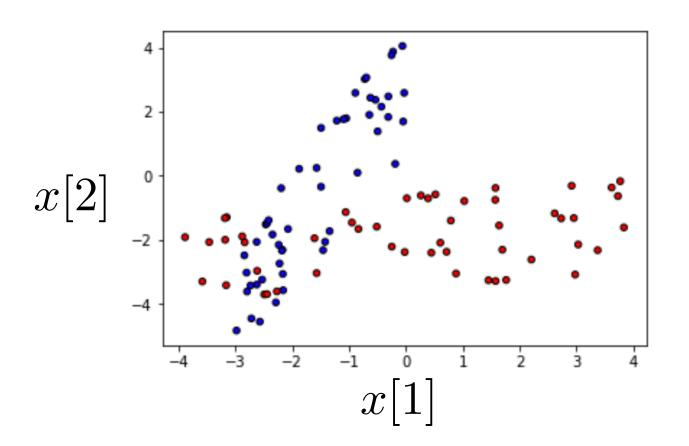
Logistics:

- Mid-term evaluation
- As we transition to in-person lectures and sections starting 1/31/2022, some OHs will be in-person and some will be on zoom.

Lecture 11: Classification with logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}
- Note that logistic regression is a classification algorithm not a regression algorithm

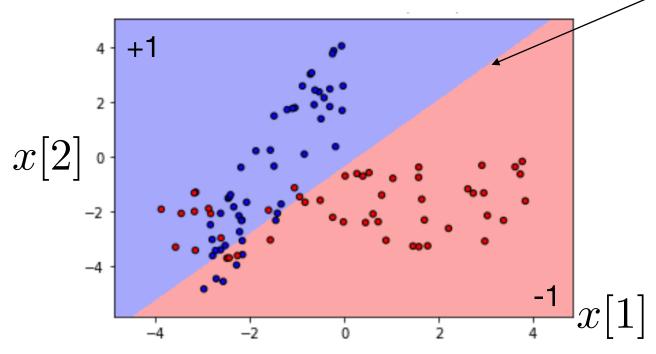
Training data for a binary classification problem



- in this example, each input is $x_i \in \mathbb{R}^2$
- Red points have label y_i =-1, blue points have label y_i =1
- We want a predictor that maps any $x \in \mathbb{R}^2$ to a prediction $\hat{y} \in \{-1, +1\}$

Example: linear classifier trained on 100 samples

simple decision boundary at $w^T x + b = 0$



- We fit a linear model: $w_0 + w_1 x[1] + w_2 x[2] = 0.8 1.1x[1] + 0.9x[2]$
- predict using $\hat{y} = \text{sign}(0.8 1.1x[1] + 0.9x[2])$
- decision boundary is the line (or hyperplane in higher dimensions) defined by 0.8 1.1x[1] + 0.9x[2] = 0
- note that a model $2w^Tx + 2b$ has the same predictions as $w^Tx + b$
- How do we find such a good linear classifier that fits the data?

Binary Classification with 0-1 loss

- **Learn** a linear model: $f: x \mapsto \hat{y} = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: sign(ŷ)
- Ideal loss function $\ell(\hat{y}, y)$:
 - **0-1 loss**, because we care about how many were classified correctly

0.0 + -3

What are weaknesses?

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases} \qquad \ell(\hat{y}, +1) = \begin{cases} 0 & \hat{y} > 0 \\ +1 & \hat{y} \le 0 \end{cases}$$

$$\text{true } y \qquad \text{prediction } \hat{y}$$

$$\hat{Z}(\hat{y}, +1) = \begin{cases} 0 & \hat{y} > 0 \\ +1 & \hat{y} \le 0 \end{cases}$$

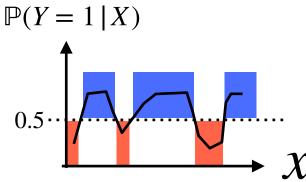
true y

prediction \hat{y}

Binary Classification with 0-1 loss

• If we know the underlying distribution, $(x, y) \sim P_{X,Y}$ and if we do not restrict ourselves to **any function class**, then we could find the optimal predictor under **0-1 loss**, called **Bayes optimal classifier**

•
$$f_{\text{Bayes}}(x) = \arg \max_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y = \hat{y} | X = x)$$



- Claim: Bayes optimal classifier achieves the minimum possible achievable true error for 0-1 loss
- True error: $\mathbb{E}_{X,Y}[\mathcal{E}(f(X),Y)] = \mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- Proof: We can write the true error of a classifier $f(\cdot)$ using chain rule as

optimal classifier minimizes this true error, at every x $f_{\mathrm{opt}}(x) = \arg\min_{\hat{\mathbf{y}} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y \neq \hat{\mathbf{y}} \mid x)$

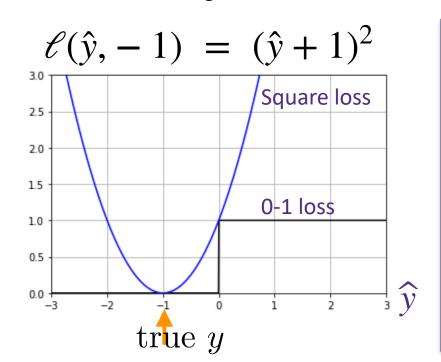
• But, we do not know $P_{X,Y}$ and 0-1 loss cannot be optimized with gradient descent

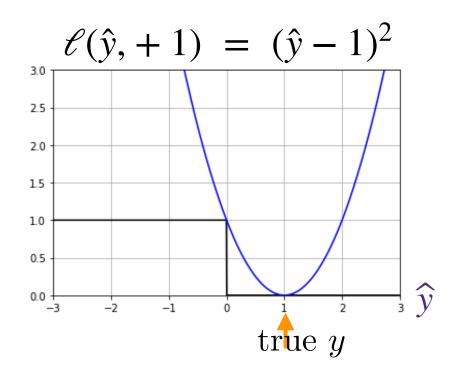
Binary Classification with square loss

- Learn a linear model: $f: x \mapsto \hat{y} = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: $sign(\hat{y})$
- Square loss function $\mathcal{E}(b + x^T w, y) = (y x^T w b)^2$
 - This is the same as treating this as a linear regression problem

$$(\widehat{w}, \widehat{b}) = \arg\min_{b,w} \sum_{i=1}^{n} (y_i - (b + x_i^T w))^2$$

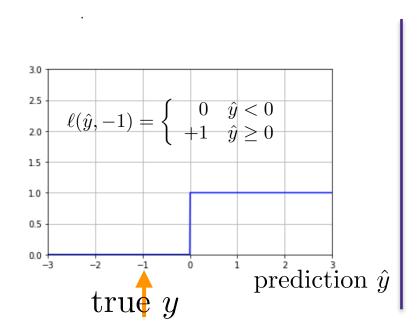
What is the strengths and weaknesses?

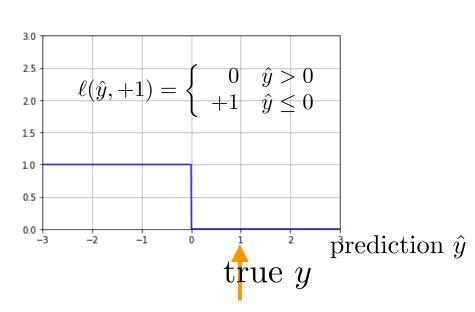




Looking for a better loss function

- we get better results using loss functions that
 - approximate, or captures the flavor of, the 0-1 loss
 - is more easily optimized (e.g. convex and/or non-zero derivatives)
- concretely, we want a loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - · Which has other nice characteristics, e.g., differentiable or convex





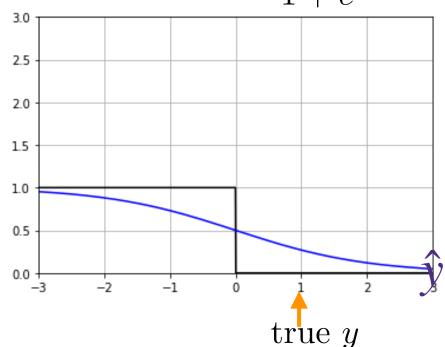
Sigmoid loss
$$\ell(\hat{y}, y) = \frac{1}{1 + e^{y\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

3.0
2.5
2.0
1.5
1.0
0.5
0.0
-3 -2 -1 0 1 2 3
$$\hat{y}$$

$$\ell(\hat{y}, +1) = \frac{1}{1 + e^{\hat{y}}}$$



- differentiable approximation of 0-1 loss
- What is the weakness?
- the two losses sum to one

true y

$$\frac{1}{1+e^{-\hat{y}}} + \frac{1}{1+e^{\hat{y}}} = \frac{e^{\hat{y}}}{e^{\hat{y}}+1} + \frac{1}{1+e^{\hat{y}}} = 1$$

softer (or smoothed) version of the 0-1 loss

Logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$

$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}) \qquad \ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- differentiable and convex in \hat{y}
- how do we show $\ell(\cdot, y)$ is convex?
- approximation of 0-1
- Most popular choice of a loss function for classification problems

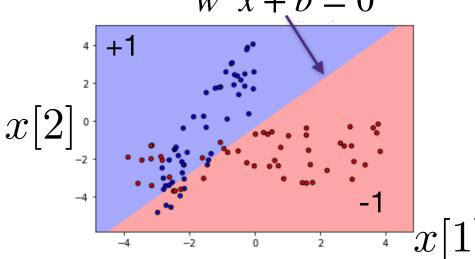
Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $\hat{y} = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for

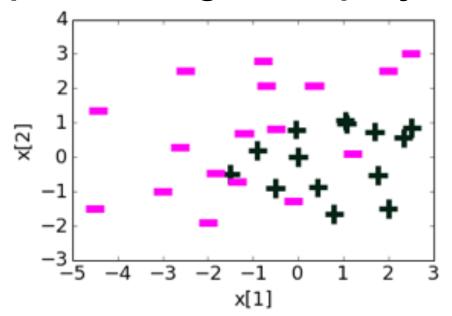
$$(\hat{b}, \hat{w}) = \arg\min_{b,w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at $w^T x + b = 0$



Example: adding more polynomial features



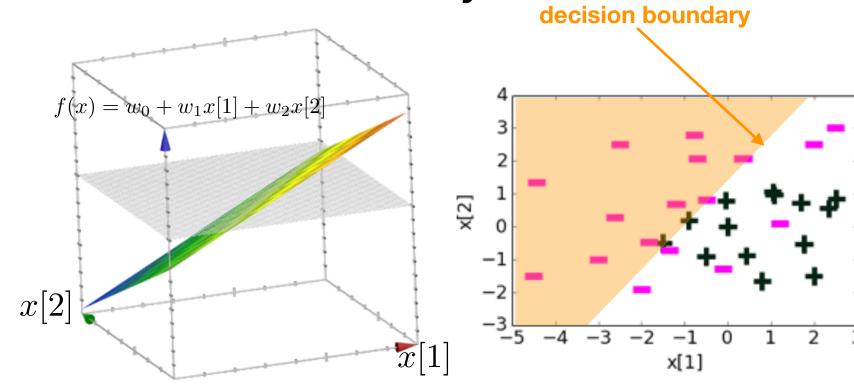
Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$
 $h_2(x) = x[2]$
 $h_3(x) = x[1]^2$
 $h_4(x) = x[2]^2$
 \vdots

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear on polynomial features

•
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Learned decision boundary



Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

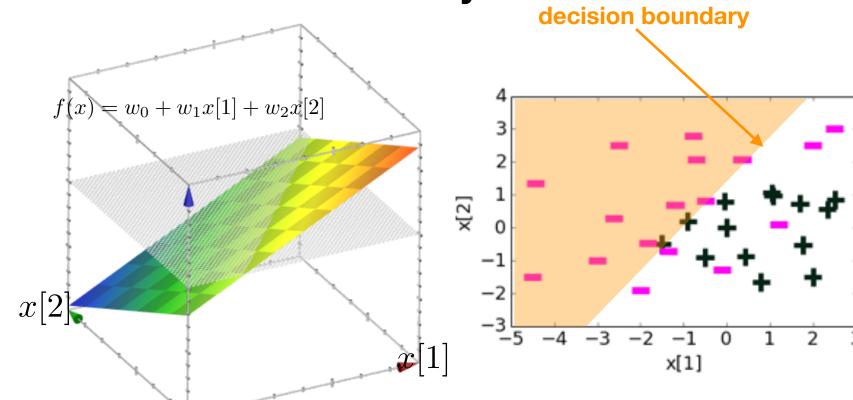
Learned decision boundary



Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

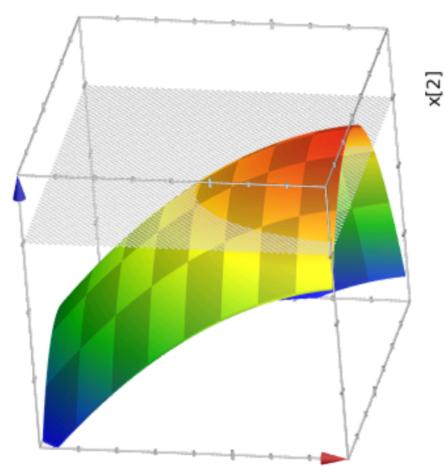
Learned decision boundary

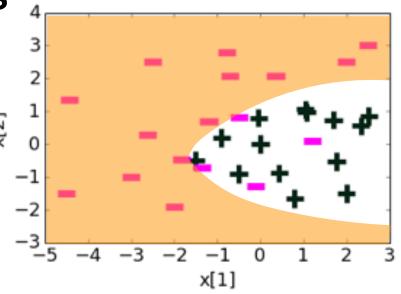


Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

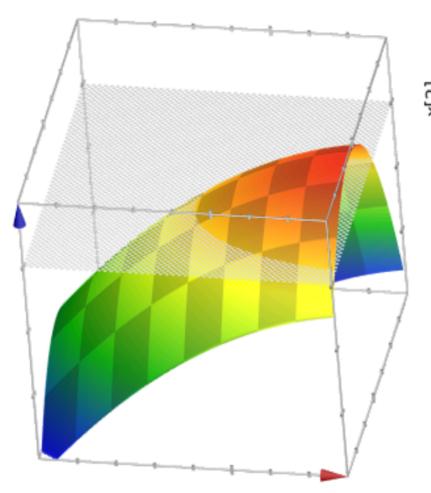


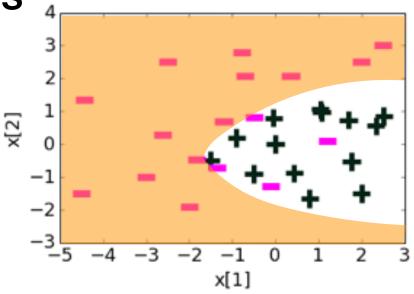


Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

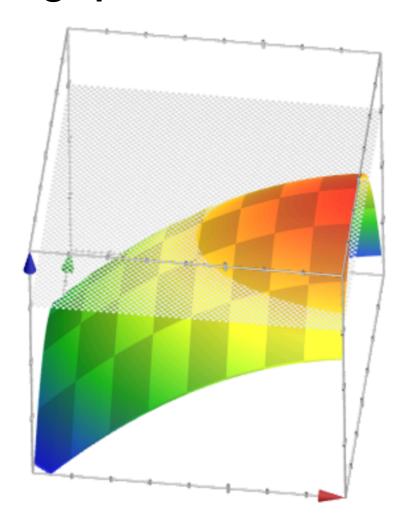


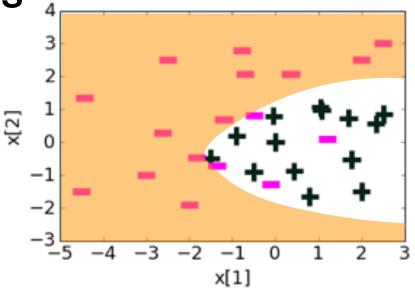


Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features





Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

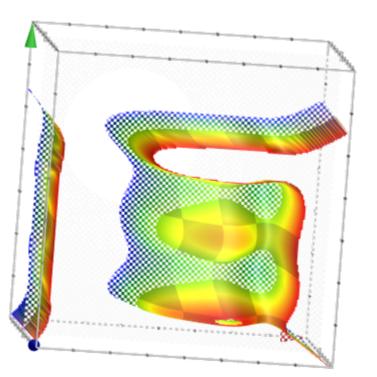
Adding higher degree polynomial features

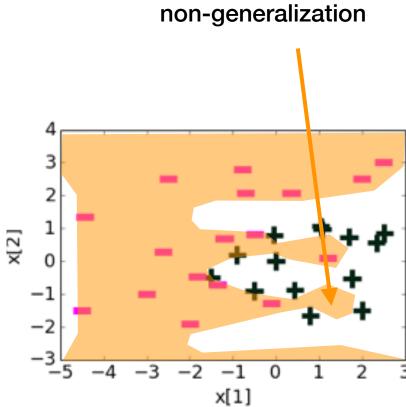


Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2])6	-8.6

Coefficient values getting large

Adding higher degree polynomial features



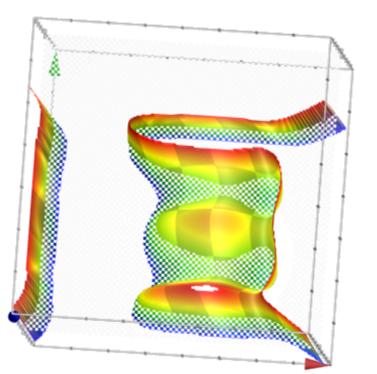


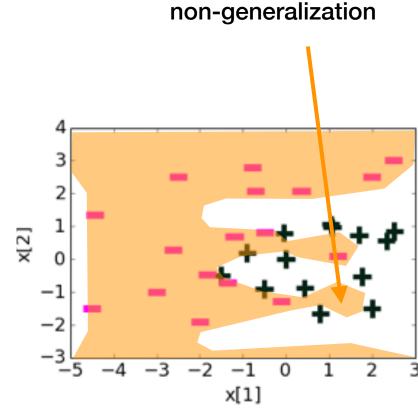
Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Adding higher degree polynomial features





Overfitting leads to

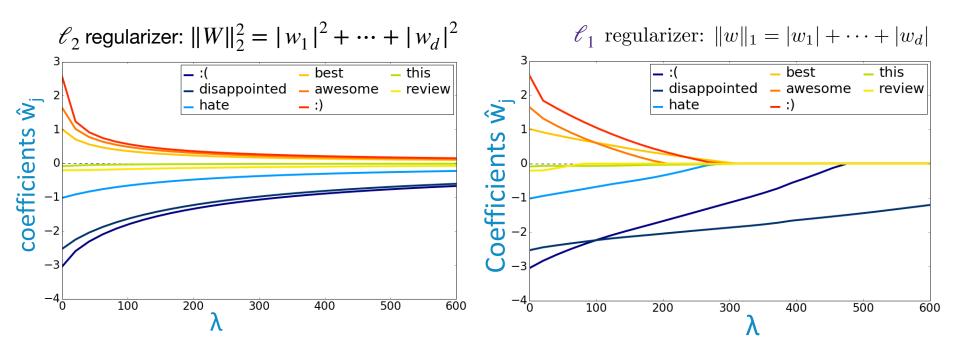
Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	$(x[2])^2$	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	$(x[1])^6$	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Regularization path



• Absolute regularizer (a.k.a \mathcal{C}_1 regularizer) gives sparse parameters, which is desired for interpretability, feature selection, and efficiency

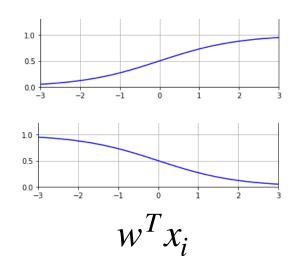
Probabilistic interpretation of logistic regression

- just as Maximum Likelihood Estimator (MLE) under linear model and additive Gaussian noise model recovers linear least squares,
- we study a particular noise model that recovers logistic regression as MLE
- a probabilistic noise model for Binary labels:

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

with a ground truth model parameter $w \in \mathbb{R}^d$



- this function $\sigma(z)=\frac{1}{1+e^{-z}}$ is called a **logistic function** (not to be confused with logistic loss, which is different) or a **sigmoid function**
- if we know that the data came from such a model, but do not know the ground truth parameter $w \in \mathbb{R}^d$, we can apply MLE to find the best w
- this MLE recovers the logistic regression algorithm, exactly

Maximum Likelihood Estimator (MLE)

• if the data came from a probabilistic model model: $(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}})$ $\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$

• log-likelihood of observing a data point (x_i, y_i) is

$$\log\text{-likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all loglikelihoods on training data points

$$\hat{w}_{\text{MLE}} = \arg \max_{w} \ \mathbb{P}(\{y_1, ..., y_n\} | \{x_1, ..., x_n\})$$

(independence)

(substitution)

notice that this is exactly the logistic regression:

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \frac{1}{n} \left(\sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = 1} \log(1 + e^{-w^T x_i}) \right)$$

• once we have trained a model $\hat{w}_{\text{logistic}}$, we can make a hard prediction \hat{v} of the label at an input example x

$$\hat{v} = \begin{cases} +1 & \text{if } \mathbb{P}(+1|x) \ge \mathbb{P}(-1|x) \\ -1 & \text{otherwise} \end{cases}$$

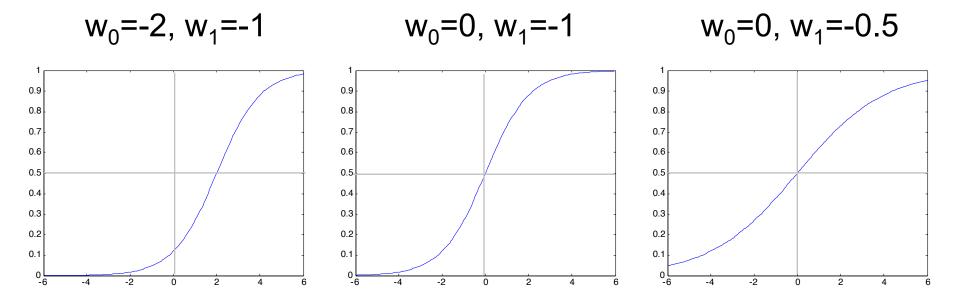
$$= \begin{cases} +1 & \text{if } \frac{1}{1+e^{-w^T x}} \ge \frac{1}{1+e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } 1 \le e^{2w^T x} \\ -1 & \text{otherwise} \end{cases}$$

$$= \operatorname{sign}(w^T x)$$

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$



Multi-class regression

How do we encode categorical data y?

- so far, we considered Binary case where there are two categories
- encoding *y* is simple: {+1,-1}
- multi-class classification predicts categorial y
- taking values in $C = \{c_1, ..., c_k\}$
- c_i 's are called classes or labels
- examples:

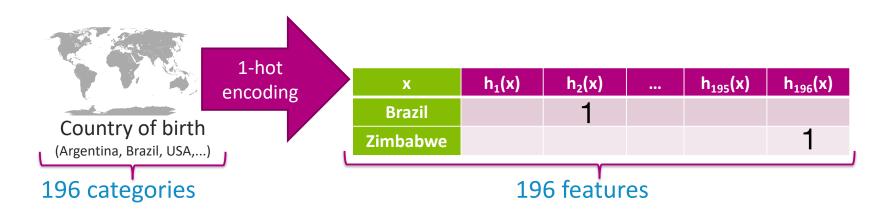
Zipcode (10005, 98195,...)

All English words

a k-class classifier predicts y given x

Embedding c_i 's in real values

- for optimization we need to ${\bf embed}$ raw categorical c_j 's into real valued vectors
- there are many ways to embed categorial data
 - True->1, False->-1
 - Yes->1, Maybe->0, No->-1
 - Yes->(1,0), Maybe->(0,0), No->(0,1)
 - Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)
 - Ordered sequence: (Horse 3, Horse 1, Horse 2) -> (3,1,2)
- we use one-hot embedding (a.k.a. one-hot encoding)
 - each class is a standard basis vector in k-dimension



Multi-class logistic regression

data: categorical y in $\{c_1, ..., c_k\}$ with k categories

we use one-hot encoding, s.t.
$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 implies that $y = c_1$

model: linear vector-function makes a linear prediction $\hat{y} \in \mathbb{R}^k$

$$\hat{y}_i = f(x_i) = w^T x_i \in \mathbb{R}^k$$

with model parameter matrix $w \in \mathbb{R}^{d \times k}$ and sample $x_i \in \mathbb{R}^d$

$$f(x_{i}) = \begin{bmatrix} f_{1}(x_{i}) \\ f_{2}(x_{i}) \\ \vdots \\ f_{k}(x_{i}) \end{bmatrix} = \underbrace{\begin{bmatrix} w_{1,0} & w_{1,1} & w_{1,2} & \cdots \\ w_{2,0} & w_{2,1} & w_{2,2} & \cdots \\ \vdots & & & & \vdots \\ w_{k,0} & w_{k,1} & w_{k,2} & \cdots \end{bmatrix}}_{w^{T}} \underbrace{\begin{bmatrix} 1 \\ x_{i}[1] \\ \vdots \\ x_{i}[d] \end{bmatrix}}_{x_{i}} = \begin{bmatrix} w_{1,0} + w_{1,1}x_{i}[1] + w_{1,2}x_{i}[2] + \cdots \\ w_{2,0} + w_{2,1}x_{i}[1] + w_{2,2}x_{i}[2] + \cdots \\ \vdots \\ w_{k,0} + w_{k,1}x_{i}[1] + w_{k,2}x_{i}[2] + \cdots \end{bmatrix}}_{x_{i}}$$

$$w = \begin{bmatrix} w[:,1] & w[:,2] & \cdots & w[:,k] \end{bmatrix}$$

Logistic regression

2 classes

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}} = \frac{e^{w^T x_i}}{1 + e^{w^T x_i}}$$

k classes

$$\mathbb{P}(y_i = c_1 | x_i) = \frac{e^{w[:,1]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

$$\mathbb{P}(y_i = c_k | x_i) = \frac{e^{w[:,k]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

Without loss of generality setting w[:,1]=0 when k=2 recovers the original binary class case

Maximum Likelihood Estimator

$$\text{maximize}_{w} \frac{1}{n} \sum_{i=1}^{n} \log(\mathbb{P}(y_{i} | x_{i}))$$

maximize_{$$w \in \mathbb{R}^d$$} $\frac{1}{n} \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right)$

$$\text{maximize}_{w \in \mathbb{R}^d} \ \frac{1}{n} \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right) \\ \text{maximize}_{w \in \mathbb{R}^{d \times k}} \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k \mathbf{I}\{y_i = c_j\} \log \left(\frac{e^{w[:,j]^T x_i}}{\sum_{j'=1}^k e^{w[:,j']^T x_i}} \right) \\ \mathbf{I}\{y_i = j\} \text{ is an indicator that is one only if } y_i = j$$

Questions?