Logistics:

- Mid-term evaluation

- As we transition to in-person lectures and sections starting 1/31/2022,
some OHs will be in-person and some will be on zoom.

Lecture 11:
Classification with
logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

- Note that logistic regression is
a classification algorithm not a regression algorithm




Training data for a binary classification problem
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e in this example, each input is x; € R?
e Red points have label y,=-1, blue points have label y,=1

« We want a predictor that maps any x € R? to a predictiony € {—1, + 1}



Example: linear classifier trained on 100 samples
simple decision boundary at wlix+b=0
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We fit a linear model: wy + wix[1] + wyx[2] = 0.8 — 1.1x[1] + 0.9x[2]

predict using y = sign(0.8 — 1.1x[1] + 0.9x[2])

decision boundary is the line (or hyperplane in higher dimensions) defined by
0.8 - 1.1x[1]+0.9%x[2] =0

note that a model 2w’ x + 2b has the same predictions as w! x + b

How do we find such a good linear classifier that fits the data?



Binary Classification with 0-1 loss

e Learnalinearmodel:f:x— 9y =b+x'w
- X —input/features, y € {—1, 4+ 1} —label in target classes
» Prediction: sign()

« Ideal loss function Z(7y, y):

* 0-1 loss, because we care about how many were classified correctly
 What are weaknesses?
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Binary Classification with 0-1 loss

If we know the underlying distribution, (x, y) ~ PX’Y and if we do not restrict

ourselves to any function class, then we could find the optimal predictor under
0-1 loss, called Bayes optimal classifier

o JBayes(¥) = arg max IPY|X(Y y|X =x)

ye{-1,1

P(Y = 1|X)

0.5-

> X
Claim: Bayes optimal classifier achieves the minimum possible achievable true
error for 0-1 loss

True error: Ey ,[£(f(X), Y)] = P( sign(f(X)) # Y)

Proof:
We can write the true error of a classifier f( - ) using chain rule as

optimal classifier minimizes this true error, at every x
JoptX) = arg min Py (Y # y|x)
yE{—l,l}

But, we do not know Py  and 0-1 loss cannot be optimized with gradient descent



Binary Classification with square loss

 Learnalinearmodel:f:x = 9y =b+x'w
X input/features, y € {—1, + 1} label in target classes
- Prediction: sign(y)
. Square loss function Z(b + x'w,y) = (y — xTw — b)?
* This is the same as tr,?ating this as a linear regression problem
(w, /E) = arg min z (y; — (b + xiTw))2
b,w

i=1
« What is the strengths and weaknesses?
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Looking for a better loss function

« we get better results using loss functions that
« approximate, or captures the flavor of, the 0-1 loss
is more easily optimized (e.g. convex and/or non-zero derivatives)
- concretely, we want a loss function
with £(g, —1) small when ¢ < 0 and larger when g > 0
with £(g,1) small when y > 0 and larger when 3 < 0
Which has other nice characteristics, e.g., differentiable or convex
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Sigmoid loss 75, y) =
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What is the weakness?
the two losses sum to one
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Logistic loss £(y, y) = log(1 + e ™)

(3, —1) = log(1 + €¥) (4, +1) = log(1 + e~ ?)
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differentiable and convex in y

how do we show Z( -, V) is convex?
approximation of 0-1
Most popular choice of a loss function for classification problems



Logistic regression for binary classification

.Data D = {(x; e R%,y, € {—1,+ 1D},

. Model: § =xTw + b

. Loss function: logistic loss Z(3, y) = log(1 + e¢™?)
- Optimization: solve for

(/b\, W) = arg min Z log(1 + e_yi(b+xiTW))
A

 As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wlix+b=0
using gradient descent T » ‘\
- Prediction: sign(b + XTW) 2 ...’.j::
T2 e
S ";’.i .'. % e iy .. °
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Example
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data: x in 2-dimensions, y in {+1,-1}

features: polynomials

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features
ho(iIZ) —
hi(z) = x[1]
ho(x) = x|2]
hs(x) = z[1)?
hy(z) = x[2]?

woho(z) + wihi(x) +waha(x) + - -




12

Learned decision boundary

f(x) :wo+ wiz|l] + wex|2) ;
: \ - - -
| U 7 l X 0 - + -
j ‘ : 1 . + + +
| | 2| - T
33[2] © I -3 R
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T|1] x(1]

Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth
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Learned decision boundary
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Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth
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Learned decision boundary

f(x) = wo—l—wlx[l]—i—wgscz[Q] . ;
| " , Y -
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Coefficient

ho(x) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth
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Adding quadratic features
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Coefficient

ho(X)
hi(x)
ha(X)
h3(x)
ha(x)
hs(x)

1
x[1]
x[2]

(x[1]1)?
(x[2])?
x[1]x[2]

e Adding more features gives more complex models
e Decision boundary becomes more complex

1.68
1.39
-0.59
-0.17
-0.96
Omitted




Adding quadratic features
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x[1]

ho(x) 1 1.68
h1(x) x[1] 1.39
ha(x) x[2] -0.59
h3(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted

e Adding more features gives more complex models
e Decision boundary becomes more complex
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e Adding more features gives more complex models
e Decision boundary becomes more complex

Adding quadratic features ,
, - - -
5 10 - - Ty g
< 0 - + 4 =
. - B
ol = + +
35 -4 -3 -2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
h1(x) x[1] 1.39
ho(x) x[2] -0.59
hs(x) (x[1])2 0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted



Addlng hlgher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hg(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[21)

21.6
= Coefficient values

getting large

x[2]

Overfitting leads to
non-generalization
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Adding higher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
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h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?

(x[2])?

(x[1])3

(x[2])?

(x[1])*

(x[2])*

(x[1])®

(x[2])®

(x[1])®

(x[21)

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization
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Adding higher degree polynomial features

Coefficient
Value
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hig(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[2])®

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization

* Qverfitting leads to very large values of
f(il?) — woho(ZE) + wlhl(x) + thQ(Qj) 4+ ...




Regularization path
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 Absolute regularizer (a.k.a ;| regularizer) gives sparse

parameters, which is desired for interpretability, feature
selection, and efficiency



Probabilistic interpretation of logistic regression

e just as Maximum Likelihood Estimator (MLE) under linear model and
additive Gaussian noise model recovers linear least squares,

e we study a particular noise model that recovers logistic regression as MLE

e a probabilistic noise model for Binary labels:

1 .
I]j) .= + 1 X: = OSL/
(yl | l) 1 + e_WTxi ol _I _' | |
1 y
P =-1]x) = Tx; N
I +ev'x - —_

with a ground truth model parameter w € R4 WT X
l

. this function 6(z) = —— is called a logistic function (not to be
e—Z
confused with logistic loss, which is different) or a sigmoid function
e if we know that the data came from such a model, but do not know the

ground truth parameter w € IRd, we can apply MLE to find the best w
* this MLE recovers the logistic regression algorithm, exactly



Maximum Likelihood Estimator (MLE)

1 1

T T
l4+e w2 1+e¥
A\ . s \u
-~ -

Plyi=+1[z;) P(y;=—1|z;)

* if the data came from a probabilistic model model: (

z)

7

* log-likelihood of observing a data point (x;, ;) is

log (ﬁ if y; = +1
log-likelihood = log (P(yz\:vz)) — 1+e i
log < L

1_|_e’wT$i

 Maximum Likelihood Estimator is the one that maximizes the sum of all log-
likelihoods on training data points

wyviep = argmax Py, ...y, | {x - x,})

(independence)

(substitution)



notice that this is exactly the logistic regression:

1 r T
Wiogistic = arg mvin ;( Z log(1 +¢e"™ %) + Z log(l +e™" xi))

once we have trained a model Wlogistic, we can make a hard prediction ¥
of the label at an input example x

| +1 it P(+1|x) > P(—1|x)
V.o —1 otherwise

f . 1 1

> -
= < —I_l lf 1"'6_me T 1+€me
—1  otherwise

11 ifl<ew®
—1 otherwise

\

= sign(w’ z)



Understanding the sigmoid

g(wo + Zwiﬂfi) =
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Multi-class regression



How do we encode categorical data y?

* so far, we considered Binary case where there are two categories
e encoding y is simple: {+1,-1}

e multi-class classification predicts categorial y
e taking valuesin C = {cy, ..., ¢}

e (.S are called classes or labels

J .
* examples: .
2 | :
%‘ 10095 All English words
Y \§‘ I|:FT; thv Btl;‘&stl:ee
Country of birth Zipcode
(Argentina, Brazil, USA,...) (10005, 98195,...)

e a k-class classifier predicts y given x



Embedding ¢;’s in real values

o for optimization we need to embed raw categorical cj’s into real
valued vectors

* there are many ways to embed categorial data
e True->1, False->-1
e Yes->1, Maybe->0, No->-1
e Yes->(1,0), Maybe->(0,0), No->(0,1)
e Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

e Ordered sequence:
(Horse 3, Horse 1, Horse 2) -> (3,1,2)

* we use one-hot embedding (a.k.a. one-hot encoding)
e each class is a standard basis vector in k—dimension

1-h
encoding Chy) | b)) | o | o) | hyggle) |
1

Country of birth 1
\ (Argentina, Brazil, USA,...) ] | J

Y |
28 196 categories 196 features
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Multi-class logistic regression

e data: categorical yin {c, ..

we use one-hot encoding, s.t. y =

., C} With k categories

1

-

0

-

0

implies that y = ¢,

e model: linear vector-function makes a linear prediction y € R*

with model parameter matrix w € R4k and sample x; € R4

Silx) (W10 Wi Wip o

fay = |POD| o Mo War W2
i/ . - .

_fk(xl.)_ | Wko Wit W2

w = [w[: A1 wl: 2]

w

T

wl:, k]]

1
xi[l]

_xi[d]_

X

wio + wpxl +wyox[2] + -

Wo o+ wo 1 X[ 1]+ wy o x[2] + -

_Wk,o + wk,lxi[l] + wk,le-[Z] + .-




* Logistic regression

2 classes

Py =—11x) =———
I +ev X
T

eV Xi

PO =+11%) =

1+ e N 1 + e

k classes
o ew[:,l]Txi
(yl - Cl |xl) - eW[:,l]Txi + v _|_ ew[:,k]Txi
ew[:,k]Tx,-
P(y; = ¢ lx) =

el x4 ewliklTx;

Without loss of generality setting w[:,1]=0 when
k = 2 recovers the original binary class case

Maximum Likelihood Estimator

. 1 ¢
maximize, — Z log(P(y; | x;)
n

i=1

.o I ¢ 1 l
maximize, cra ; Z:J Og( 1 + e viv'x )
=

ew[:’j]T'xi )

Yh el
j=1

1 n k
maximize,,c gaxc— Z z Hy; = ¢;}1og (
n
i=1 [j=1

I{y; = j} is an indicator that is one only if y; = j




Questions?



