Logistics:

- HW2 is our and due Tuesday Feb 11th Friday,
 - it covers up to stochastic gradient descent
 - It is quite involved, so we are giving you more time, but start early!
- Return to in-person on Monday 1/31/2022
 - Sections will be in person starting next week and OHs will be hybrid

Lecture 10: Convexity

- When is an optimization (or learning) easy/fast to solve?

Recap: Ridge vs. Lasso

Ridge

minimize_w
$$\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

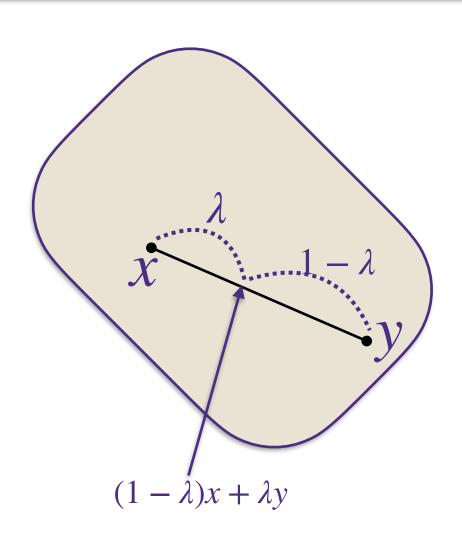
- Very fast:
 - Closed form solution if used with linear models
 - Even with other loss functions, optimization is fast for squared ℓ_2 regularization, because $||w||_2^2$ is **convex and smooth**
- Lasso

minimize_w
$$\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

- Slower than Ridge:
 - Requires iterative optimization algorithm like sub-gradient descent
 - In particular, it is slower because $||w||_1$ is **convex but non-smooth**

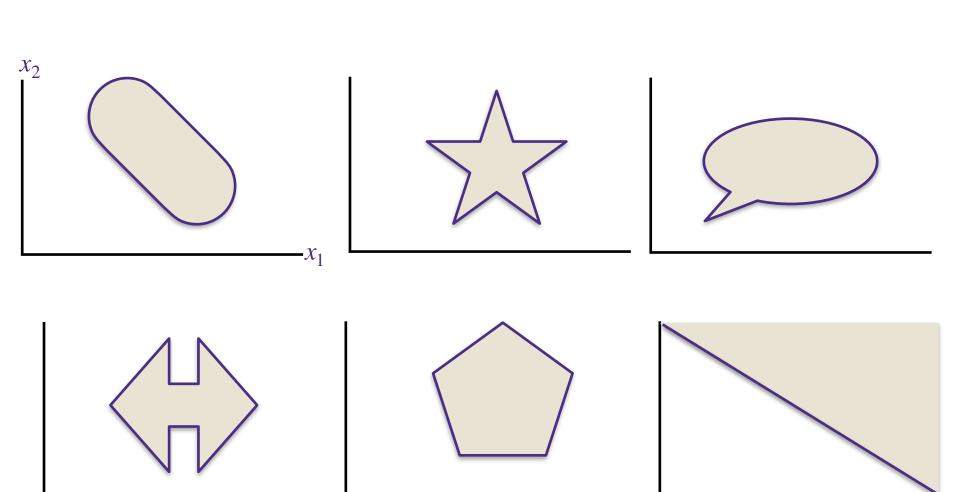
What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$



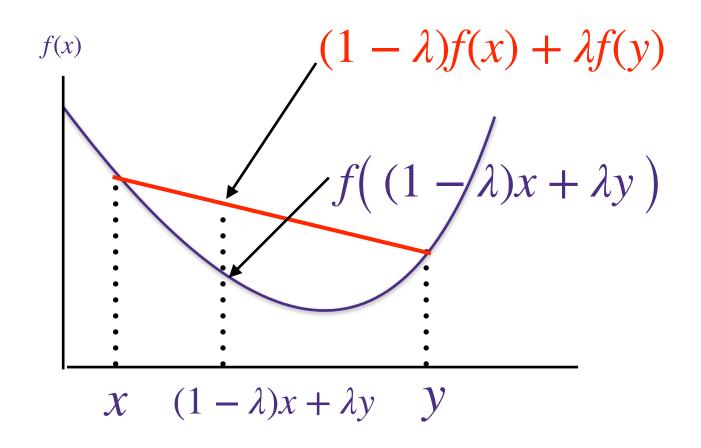
What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$



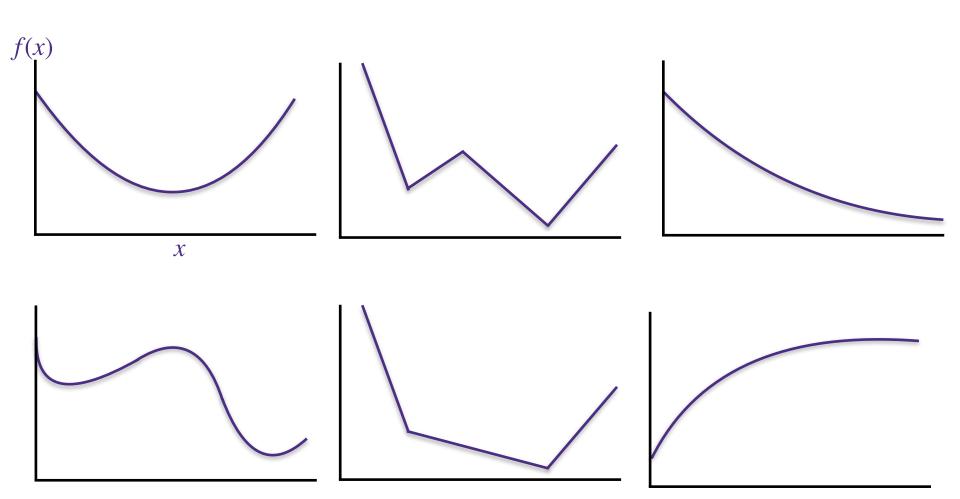
What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$



What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$



Convex functions and convex sets?

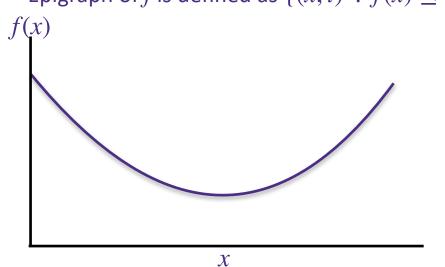
A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

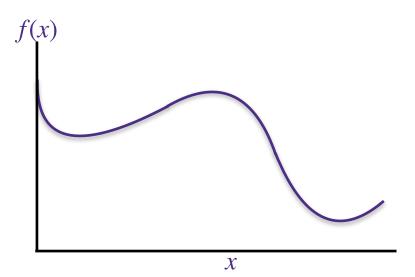
A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

Graph of f id defined as $\{(x, t) : f(x) = t\}$

Epigraph of f is defined as $\{(x, t) : f(x) \le t\}$



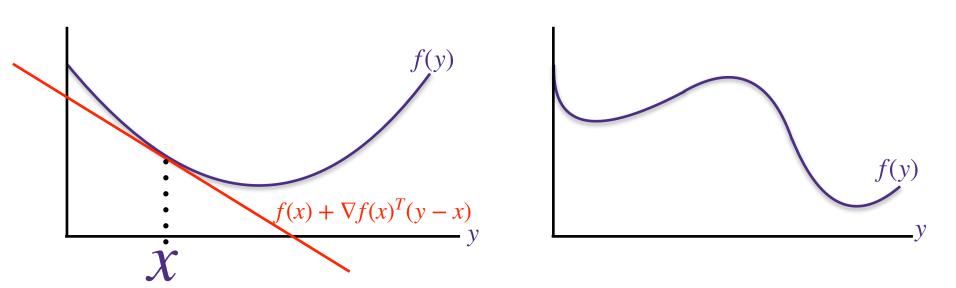


More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

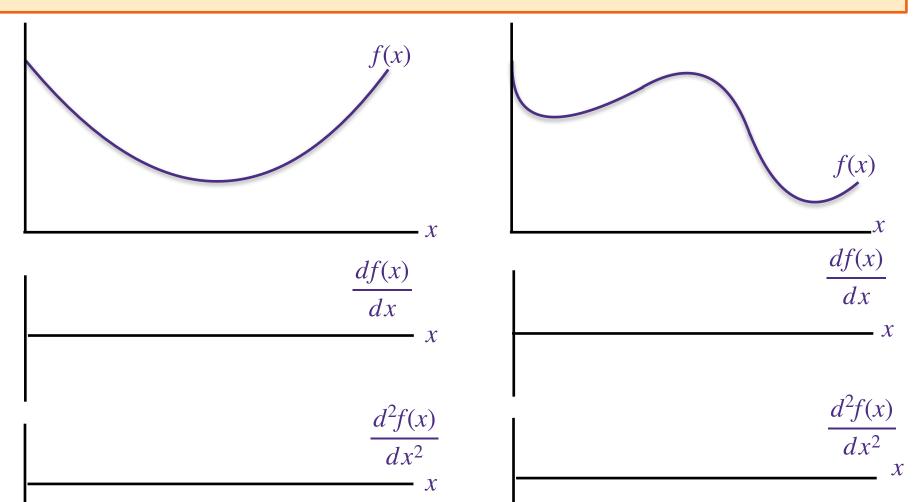
A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^{\top} (y - x)$ for all $x, y \in dom(f)$



More definitions of convexity

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$



More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^{\top} (y-x)$ for all $x, y \in dom(f)$

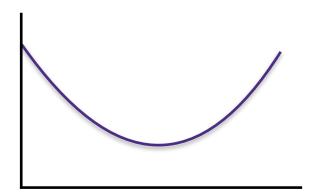
A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

Why do we care about convexity?

Convex functions

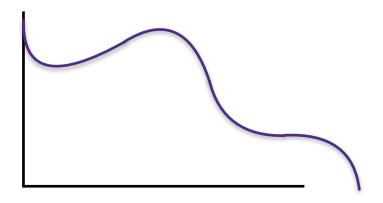
- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function



We only need to find a point with $\nabla f(x) = 0$, which for convex functions implies that it is a local minima and a global minima

Non-convex Function



For non-convex functions, a stationary point with $\nabla f(x) = 0$ could be a local minima, a local maxima, or a saddle point

Gradient Descent on $\min f(w)$

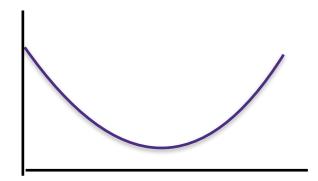
W

Initialize: $w_0 = 0$

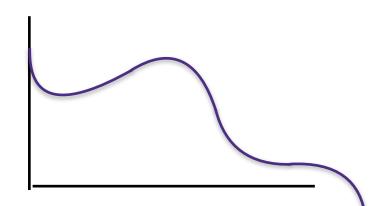
for
$$t = 1, 2, ...$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

Convex Function



Non-convex Function



- Strength: Can find global minima of a convex function efficiently
- Weakness: Can only be applied to smooth functions
 - i.e., functions that is differentiable everywhere,
 - otherwise $\nabla f(x)$ is not defined and gradient descent cannot be applied

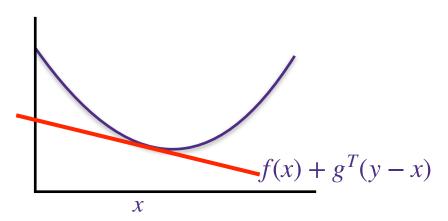
Sub-Gradient

Definition: a function is **non-smooth** if it is not differentiable everywhere

Definition: a vector $g \in \mathbb{R}^d$ is a **sub-gradient** at x if it satisfies

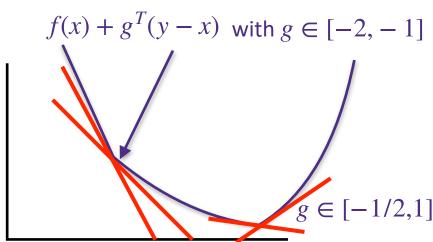
$$f(y) \ge f(x) + g^T(y - x)$$
 for all $y \in \mathbb{R}^d$

Smooth Convex Function



- · for smooth convex functions,
 - gradient is the unique sub-gradient, and
 - the global minimum is achieved at points where gradient is zero

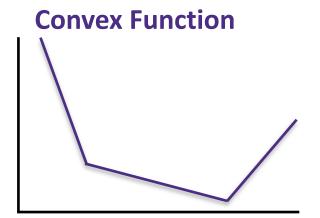
Non-smooth Convex Function

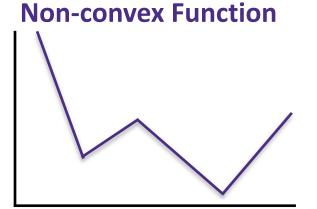


- for non-smooth convex functions,
 - the minimum is achieved at points where sub-gradient set includes the zero vector

Sub-Gradient Descent for non-smooth functions

Initialize: $w_0 = 0$ for t = 1, 2, ...Find any g_t such that $f(y) \ge f(w_t) + g_t^\top (y - w_t)$ $w_{t+1} \leftarrow w_t - \eta_t g_t$





- Strength: finds global minima for non-smooth convex functions
- Weakness: it is slower than gradient descent on convex smooth functions, because the gradient do not get smaller near the global minima
 - Instead of last iterate w_t , we use the best one we saw in all iterates
 - The stepsize needs to decrease with *t*

Coordinate descent

Initialize:
$$w_0 = 0$$

for $t = 1, 2, ...$
Let $i_t = t \% d$

$$w_{t+1}[i_t] \leftarrow w_t[i_t] - \eta_t \frac{\partial f(w_t)}{\partial w[i_t]}$$

Optimization

- You can always run gradient descent whether f is convex or not. But you only have guarantees if f is convex
- Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)

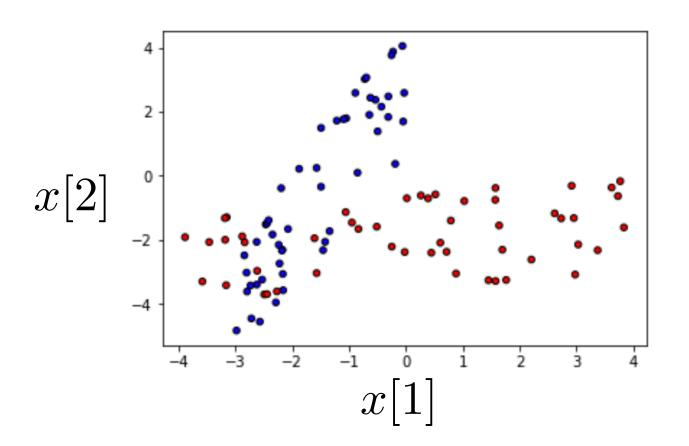
Questions?

Logistics:

Lecture 11: Classification with logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

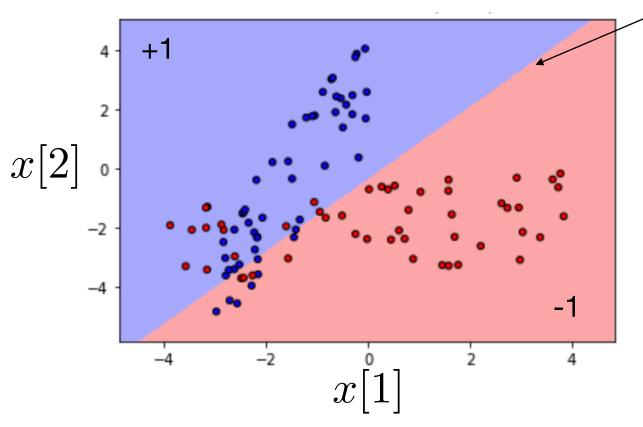
Training data for a binary classification problem



- in this example, each input is $x_i \in \mathbb{R}^2$
- Red points have label y_i =-1, blue points have label y_i =1
- We want a predictor that maps any $x \in \mathbb{R}^2$ to a prediction $\hat{y} \in \{-1, +1\}$

Example: linear classifier trained on 100 samples

simple decision boundary at $w^T x + b = 0$



- linear model: $w_0 + w_1 x[1] + w_2 x[2]$
- predict using $\hat{y} = \text{sign}(b + x^T w)$
- How do we find such a linear classifier that fits the data?

Binary Classification with 0-1 loss

- **Learn** a linear model: $f: x \mapsto y = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: sign(f(x))
- Ideal loss function $\ell(\hat{y}, y)$:
 - **0-1 loss**, because we care about how many were classified correctly
 - What are weaknesses?

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases}$$

$$\text{prediction } \hat{y}$$

$$\text{true } y$$

