Logistics:
- HW2 is our and due Tuesday Feb 11th Friday,

- it covers up to stochastic gradient descent

- It is quite involved, so we are giving you more time, but start early!
- Return to in-person on Monday 1/31/2022

- Sections will be in person starting next week and OHs will be hybrid

Lecture 10:
Convexity

- When is an optimization (or learning) easy/fast to solve?




Recap: Ridge vs. Lasso

- Ridge

n
minimize,, Z wlx; = y)* + Allwll3
i=1
 Very fast:
« Closed form solution if used with linear models

. Even with other loss functions, optimization is fast for squared ¢,
regularization, because ||w||% is convex and smooth

« Lasso

n
minimize,, Z (wlx, — yi)2 + Allwll,
i=1
- Slower than Ridge:
* Requires iterative optimization algorithm like sub-gradient descent
. In particular, it is slower because ||w||; is convex but non-smooth



What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

(1 = D)x + Ay



What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

| $O




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € R9and \ € [0, 1]

£ (I = A)fx) + 4 (y)




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € R9and \ € [0, 1]
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Convex functions and convex sets?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + \y) < (1 = N)f(2) + Af(y)
for all z,y € R%and A € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4l : f(x) <t} is convex

Graph of fid defined as {(x, 1) : f(x) =t}
Epigraph of fis defined as {(x,7) : f(x) <t}
J&x) Jx)




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)
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More definitions of convexity

A function f:R? — R that is twice-differentiable everywhere is convex if

sz(ilf) = 0 for all x € dom(f)

Jf(x)
Jx)
X X
df(x) df (x)
dx dx
X X
d2f(x) d*f(x)
dx? dx?
X




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + \y) < (1 = N)f(2) + Af(y)
for all z,y € R%and A € [0, 1]

A function f :R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) = f(z) + Vf(z)' (y — 2) for all z,y € dom(f)

A function f : R? — R that is twice-differentiable everywhere is convex if
V2f(z) = 0 for all x € dom(f)




Why do we care about convexity?

Convex functions
- All local minima are global minima

- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N

We only need to find a point with Vf(x) =0, For non-convex functions, a stationary point
which for convex functions implies that it is with Vf(x) = O could be a local minima,
a local minima and a global minima a local maxima, or a saddle point




Gradient Descent on min f(w)
w

Initialize: wg =0
fort=1,2,...
w1 = wr — NV f(wy)

Convex Function Non-convex Function

e Strength: Can find global minima of a convex function efficiently
e Weakness: Can only be applied to smooth functions
* j.e., functions that is differentiable everywhere,

e otherwise Vf(x) is not defined and gradient descent cannot be applied



Sub-Gradient

Definition: a function is non-smooth if it is not differentiable everywhere

Definition: a vector g € R?is a sub-gradient at x if it satisfies

f() = f(x) + g'(y — x) forally € R?
Non-smooth Convex Function
Smooth Convex Function FOO) +87(v = x) withg € [=2, — 1]

) + g (y —x) z e [-1/2,1]

X -

. « for non-smooth convex functions
« for smooth convex functions, ’

+ the minimum is achieved at
points where sub-gradient set

* the global minimum is achieved at points includes the zero vector
where gradient is zero

 gradient is the unique sub-gradient, and



Sub-Gradient Descent for non-smooth functions

Initialize: wg =0
fort=1,2,...
Find any ¢; such that f(y) > f(ws) + ¢, (y — wy)

Wi < W — 08,

Convex Function Non-convex Function

* Strength: finds global minima for non-smooth convex functions

* Weakness: it is slower than gradient descent on convex smooth functions,
because the gradient do not get smaller near the global minima

e Instead of last iterate w,, we use the best one we saw in all iterates
e The stepsize needs to decrease with 7



Coordinate descent

Initialize: wg = 0
fort=1,2,...
Let it =1 % d

of(w,)

Wil < wili] —n, owli]



Optimization

= You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

= Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Questions?



Logistics:

Lecture 11:
Classification with
logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

W



Training data for a binary classification problem
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e in this example, each input is x; € R?
e Red points have label y,=-1, blue points have label y,=1

« We want a predictor that maps any x € R? to a predictiony € {—1, + 1}



Example: linear classifier trained on 100 samples
simple decision boundary at wlix+b=0

/

a{ +1 ** /
o
- .-:0?::
x[z] ’ °... : .QV o o ° <
-2 o o:!o“‘. ’,. ~‘o. .’: : o ~.’o :
N ° .?..: © ® e I
o 1
-4 -2 _E) 2 -
x|1]

e linear model: wy + wx[1] + w,x[2]

e predict using § = sign(b + x'w)
e How do we find such a linear classifier that fits the data?



Binary Classification with 0-1 loss

e Learnalinearmodel:f:x—y=>b+x'w
- X —input/features, y € {—1, 4+ 1} —label in target classes
» Prediction: sign( f(x))

« Ideal loss function Z(7y, y):

* 0-1 loss, because we care about how many were classified correctly
 What are weaknesses?

. 0 §<0 - _ 0 >0
é(y,—l):{ 11 §>0 {9, +1) {-|-1 y <0
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