Logistics:

- HW0 graded, for regrade request submit it through GradeScope within 7 days from release of grade.
- HW1 due Tuesday Jan 25th midnight

Lecture 9: Simple variable selection: LASSO for sparse regression

- Yet another hyper-parameter/family of model classes, but with a special property
 - # of features in polynomial regression
 - Regularization coefficient λ for ridge regression
 - Regularization coefficient λ for LASSO

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - A vector w is said to be k-sparse if at most k entries are non-zero
 - We are interested in k-sparse w with $k \ll d$
 - Why do we prefer sparse vector w in practice?

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(w) = 100 Billion, each prediction $w^T x$ is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w

$$\widehat{y}_i = \widehat{w}_{LS}^T x_i$$

$$= \square$$

$$= \sum_{j=1}^{d} \widehat{w}_{LS}[j] \times x_{i}[j] = \sum_{j:w_{LS}[j]\neq 0} \widehat{w}_{LS}[j] \times x_{i}[j]$$

Computational complexity decreases from 2d to 2k for k-sparse $\widehat{w}_{\mathrm{LS}}$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

 How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size

Single Family

Year built

Last sold price

Last sale price/sqft

Finished sqft Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type
Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

Finding best subset of features that explain the outcome/label: Exhaustive

- Try all subsets of size 1, 2, 3, ... and one that minimizes validation error
 - Problem?
 - Any Ideas?

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Forward Greedy

1:
$$T \leftarrow \emptyset$$

2: For
$$j = 1,...,k$$
 do

3:
$$j^* \leftarrow \arg\min_{\ell} \min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{j \in T \cup \{\ell\}} w[j] \times x_i[j] \right)^2$$

4:
$$T \leftarrow T \cup \{j^*\}$$

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Finding best subset: Regularize

Recall that Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

 w_i 'S area of living s

Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- Why don't we just set small ridge coefficients to 0?
 - Any issues?

Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- Consider two related features (bathrooms, showers)
- Consider w[bath] = 1 and w[shower] = 1, and w[bath] = 2 and w[shower] = 0, which one does ridge regression choose? (assuming #bathroom=#showers in every house)

Thresholded Ridge Regression

- Consider two related features (bathrooms, showers)
- Issue with thresholded ridge regression is that ridge regression prefers balanced weights between similar features
- What if we **didn't** include showers? Weight on bathrooms increases, and it should have been selected.
- We want a feature selection scheme that selects one of (#bathroom) or (#showers) automatically, using the fact that if you delete #showers #bathroom is an important feature

• There is a better regularizer for sparse regression, that can perform the feature selection automatically.

Ridge vs. Lasso Regression

Recall Ridge Regression objective:

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- sensitivity of a model w is measured in squared ℓ_2 norm $\|w\|_2^2$
- A principled method to get sparse model is Lasso with regularized objective:

$$\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2 + \lambda ||w||_1$$

• sensitivity of a model w is measured in \mathcal{C}_1 norm:

$$||w||_1 = \sum_{j=1}^d |w[j]|$$

$$\mathcal{C}_p\text{-norm of a vector } w \in \mathbb{R}^d \text{ is}$$

$$\|w\|_p \triangleq \Big(\sum_{j=1}^d |w[j]|^p\Big)^{1/p}$$

Example: house price with 16 features

• Regularization path for Lasso shows that weights drop to exactly zero as λ increases

Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. **Model selection**: choose λ based on cross validation error
 - 2. **Feature selection**: keep only those features with non-zero (or not-too-small) parameters in w at optimal λ
 - 3. **retrain** with the sparse model and $\lambda = 0$

why do we need to retrain?

Example: piecewise-linear fit

We use Lasso on the piece-wise linear example

$$h_0(x) = 1$$

 $h_i(x) = [x + 1.1 - 0.1i]^+$

Step 3: retrain

minimize_w $\mathcal{L}(w)$

 $\lambda = 0$

Step 1: find optimal
$$\lambda^*$$

minimize W $\mathcal{L}(w) + \lambda \|w\|_1$

step 2: retrain minimize W $\mathcal{L}(w) + \lambda \|w\|_1$

$$W_j$$

de-biasing (via re-training) is critical!

but only use selected features

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

Penalized Least Squares

Regularized optimization:

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

Ridge: $r(w) = ||w||_2^2$

Lasso: $r(w) = ||w||_1$

• For any $\lambda^* \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu^* \geq 0$ such that the solution of the constrained optimization, \widehat{w}_c , is the same as the solution of the regularized optimization, \widehat{w}_r , where

$$\widehat{w}_C = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \mu^*$

• so there are pairs of (λ, μ) whose optimal solution \widehat{w}_r are the same for the regularizes optimization and constrained optimization

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- the **level set** of a function $\mathcal{L}(w_1, w_2)$ is defined as the set of points (w_1, w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{u=\infty} = \hat{w}_{\mathrm{LS}}$

1-D example with quadratic loss

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- as we decrease μ from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{ (w_1,w_2) \,\middle|\, |w_1| + |w_2| \le \mu \right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

• As μ decreases (which is equivalent to increasing regularization λ) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is ?

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$ —

$$\operatorname{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

- For small enough μ , the optimal solution becomes **sparse**
- This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

Penalized Least Squares

- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- Ridge regression finds dense solutions, as L_2 -ball is "smooth"

 $\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

subject to $||w||_1 \le \mu$

$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_2^2 \le \mu$

Ridge vs. Lasso

Ridge

- Very fast:
 - Closed form solution if used with linear models
 - Even with non-linear and complex loss, optimization is fast for squared \mathcal{C}_2 regularization (to be taught later)
- Gives regularized parameters that avoid overfitting

Lasso

- Slower than Ridge:
 - It is a non-smooth optimization which is slower (to be taught later)
- Gives sparse parameters

Questions?

Logistics:

- HW2 is our and due Tuesday Feb 11th Friday,
 - it covers up to stochastic gradient descent
 - It is quite involved, so we are giving you more time, but start early!
- Return to in-person on Monday 1/31/2022
 - Sections will be in person starting next week and OHs will be hybrid

Lecture 10: Convexity

- When is an optimization (or learning) easy/fast to solve?

Recap: Ridge vs. Lasso

Ridge

minimize_w
$$\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

- Very fast:
 - Closed form solution if used with linear models
 - Even with other loss functions, optimization is fast for squared ℓ_2 regularization, because $||w||_2^2$ is **convex and smooth**
- Lasso

minimize_w
$$\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

- Slower than Ridge:
 - Requires iterative optimization algorithm like sub-gradient descent
 - In particular, it is slower because $||w||_1$ is **convex but non-smooth**

What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

Graph of f id defined as $\{(x, t) : f(x) = t\}$

Epigraph of f is defined as $\{(x, t) : f(x) \le t\}$

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^\top (y-x)$ for all $x, y \in dom(f)$

More definitions of convexity

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^{\top} (y-x)$ for all $x, y \in dom(f)$

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

Why do we care about convexity?

Convex functions

- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function

We only need to find a point with $\nabla f(x) = 0$, which for convex functions implies that it is a local minima and a global minima

Non-convex Function

For non-convex functions, a stationary point with $\nabla f(x) = 0$ could be a local minima, a local maxima, or a saddle point

Gradient Descent on $\min f(w)$

W

Initialize: $w_0 = 0$

for
$$t = 1, 2, ...$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

Convex Function

Non-convex Function

- Strength: Can find global minima of a convex function efficiently
- Weakness: Can only be applied to smooth functions
 - i.e., functions that is differentiable everywhere,
 - otherwise $\nabla f(x)$ is not defined and gradient descent cannot be applied

Sub-Gradient

Definition: a function is **non-smooth** if it is not differentiable everywhere

Definition: a vector $g \in \mathbb{R}^d$ is a **sub-gradient** at x if it satisfies

$$f(y) \ge f(x) + g^T(y - x)$$
 for all $y \in \mathbb{R}^d$

Smooth Convex Function

- · for smooth convex functions,
 - gradient is the unique sub-gradient, and
 - the global minimum is achieved at points where gradient is zero

Non-smooth Convex Function

- for non-smooth convex functions,
 - the minimum is achieved at points where sub-gradient set includes the zero vector

Sub-Gradient Descent for non-smooth functions

Initialize: $w_0 = 0$ for t = 1, 2, ...Find any g_t such that $f(y) \ge f(w_t) + g_t^\top (y - w_t)$ $w_{t+1} \leftarrow w_t - \eta_t g_t$

- Strength: finds global minima for non-smooth convex functions
- Weakness: it is slower than gradient descent on convex smooth functions, because the gradient do not get smaller near the global minima
 - Instead of last iterate w_t , we use the best one we saw in all iterates
 - The stepsize needs to decrease with *t*

Coordinate descent

Initialize:
$$w_0 = 0$$

for $t = 1, 2, ...$
Let $i_t = t \% d$

$$w_{t+1}[i_t] \leftarrow w_t[i_t] - \eta_t \frac{\partial f(w_t)}{\partial w[i_t]}$$

Optimization

- You can always run gradient descent whether f is convex or not. But you only have guarantees if f is convex
- Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)

Questions?

Logistics:

Lecture 11: Classification with logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

Training data for a binary classification problem

- in this example, each input is $x_i \in \mathbb{R}^2$
- Red points have label y_i =-1, blue points have label y_i =1
- We want a predictor that maps any $x \in \mathbb{R}^2$ to a prediction $\hat{y} \in \{-1, +1\}$

Example: linear classifier trained on 100 samples

simple decision boundary at $w^T x + b = 0$

- linear model: $w_0 + w_1 x[1] + w_2 x[2]$
- predict using $\hat{y} = \text{sign}(b + x^T w)$
- How do we find such a linear classifier that fits the data?

Binary Classification with 0-1 loss

- **Learn** a linear model: $f: x \mapsto y = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: sign(f(x))
- Ideal loss function $\ell(\hat{y}, y)$:
 - **0-1 loss**, because we care about how many were classified correctly
 - What are weaknesses?

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases}$$

$$\text{prediction } \hat{y}$$

$$\text{true } y$$

Binary Classification with 0-1 loss

• If we know the underlying distribution, $(x,y) \sim P_{X,Y}$ and if we do not restrict ourselves to any function class, then we could find the optimal predictor called **Bayes optimal classifier**

•
$$f_{\text{Bayes}}(x) = \arg \max_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y = \hat{y} \mid X = x)$$

- Claim: Bayes optimal classifier achieves the minimum possible achievable true error
- True error: $\mathbb{E}_{X,Y}[\mathcal{E}(f(X),Y)] = \mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- Proof: We can write the true error of a classifier $f(\cdot)$ using chain rule as

optimal classifier minimizes this true error, at every x $f_{\text{opt}}(x) = \arg\min_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y \neq \hat{y} \mid x)$

• But, we do not know $P_{X,Y}$ and 0-1 loss is cannot be optimizes (to be explained in lecture 11)

Binary Classification with 0-1 loss

• If we know the underlying distribution, $(x,y) \sim P_{X,Y}$ and if we do not restrict ourselves to any function class, then we could find the optimal predictor called **Bayes optimal classifier**

•
$$f_{\text{Bayes}}(x) = \arg \max_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y = \hat{y} \mid X = x)$$

- Claim: Bayes optimal classifier achieves the minimum possible achievable true error
- True error: $\mathbb{E}_{X,Y}[\ell(f(X),Y)] = \mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- Proof:

We can write the true error of a classifier
$$f(\cdot)$$
 using chain rule as $\mathbb{E}_{X,Y}[\mathbb{I}\{Y \neq f(X)\}] = \mathbb{E}_X\big[\mathbb{E}_{Y|X}[\mathbb{I}\{Y \neq f(X)\}] \mid X = X\big] = \mathbb{E}_X\big[\mathbb{P}_{Y|X}(Y \neq f(X) \mid X = X)\big]$

optimal classifier minimizes this true error, at every x $f_{\text{opt}}(x) = \arg\min_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y \neq \hat{y} \mid x)$

• But, we do not know $P_{X,Y}$ and 0-1 loss is cannot be optimizes (to be explained in lecture 11)

Binary Classification with square loss

- Learn a linear model: $f: x \mapsto y = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: sign(f(x))
- Square loss function $\ell(b + x^T w, y) = (y x^T w b)^2$
 - This is the same as treating this as a linear regression problem

$$(\widehat{w}, \widehat{b}) = \arg\min_{b,w} \sum_{i=1}^{n} (y_i - (b + x_i^T w))^2$$

What is the strengths and weaknesses?

Looking for a better loss function

- we get better results using loss functions that
 - approximate, or captures the flavor of, the 0-1 loss
 - is more easily optimized (e.g. convex and/or non-zero derivatives)
- concretely, we want a loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - Which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss
$$\ell(\hat{y}, y) = \frac{1}{1 + e^{y\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, +1) = \frac{1}{1 + e^{\hat{y}}}$$

- differentiable approximation of 0-1 loss
- but not convex in \hat{y}
- the two losses sum to one

$$\frac{1}{1 + e^{-\hat{y}}} + \frac{1}{1 + e^{\hat{y}}} = \frac{e^{\hat{y}}}{e^{\hat{y}} + 1} + \frac{1}{1 + e^{\hat{y}}} = 1$$

softer (or smoothed) version of the 0-1 loss

Logistic loss
$$\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$$

 $\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}})$ $\ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$

- differentiable and convex in \hat{y}
- approximation of 0-1
- Most popular choice of a loss function for classification problems

Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $y = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for

$$(\hat{b}, \hat{w}) = \arg\min_{b,w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at $w^T x + b = 0$

Example: adding more polynomial features

Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$
 $h_2(x) = x[2]$
 $h_3(x) = x[1]^2$
 $h_4(x) = x[2]^2$
 \vdots

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear on polynomial features

•
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding higher degree polynomial features

Feature	Value	Coefficient learned
$h_0(x)$	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	$(x[1])^6$	0.8
h ₁₂ (x)	(x[2])6	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to

Feature	Value	Coefficient learned
$h_0(x)$	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	$(x[2])^2$	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	$(x[1])^6$	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Regularization path

 Absolute regularizer (a.k.a L1 regularizer) gives sparse parameters, which is desired for interpretability, feature selection, and efficiency

Probabilistic interpretation of logistic regression

- just as Maximum Likelihood Estimator (MLE) under linear model and additive Gaussian noise model recovers linear least squares,
- we study a particular noise model that recovers logistic regression
- a probabilistic noise model for Boolean labels:

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

with a ground truth model parameter $w \in \mathbb{R}^d$

- this function $\sigma(z)=\frac{1}{1+e^{-z}}$ is called a **logistic function** (not to be confused with logistic loss, which is different) or a **sigmoid function**
- if we know that the data came from such a model, but do not know the ground truth parameter $w \in \mathbb{R}^d$, we can apply MLE to find the best w
- this MLE recovers the logistic regression algorithm, exactly

Maximum Likelihood Estimator (MLE)

• if the data came from a probabilistic model model:

$$\left(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}}\right)$$

$$\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$$

• log-likelihood of observing a data point (x_i, y_i) is

$$\log-\text{likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all loglikelihoods on training data points

$$\hat{w}_{\text{MLE}} = \arg\max_{w} \mathbb{P}(\{y_1, ..., y_n\} \mid \{x_1, ..., x_n\})$$

$$= \arg\max_{w} \prod_{i=1}^{\mathcal{W}} \mathbb{P}(y_i \mid x_i)$$

$$= \arg\max_{w} \sum_{i: y_i = -1} \log\left(\frac{1}{1 + e^{w^T x_i}}\right) + \sum_{i: y_i = 1} \log\left(\frac{1}{1 + e^{-w^T x_i}}\right)$$
(substitution)

notice that this is exactly the logistic regression:

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \frac{1}{n} \left(\sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = 1} \log(1 + e^{-w^T x_i}) \right)$$

• once we have trained a model $\hat{w}_{\text{logistic}}$, we can make a hard prediction \hat{v} of the label at an input example x

$$\hat{v} = \begin{cases} +1 & \text{if } \mathbb{P}(+1|x) \ge \mathbb{P}(-1|x) \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } \frac{1}{1+e^{-w^T x}} \ge \frac{1}{1+e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } 1 \le e^{2w^T x} \\ -1 & \text{otherwise} \end{cases}$$

$$= \operatorname{sign}(w^T x)$$

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

Multi-class regression

How do we encode categorical data y?

- so far, we considered Boolean case where there are two categories
- encoding y is simple: {+1,-1}, as there is not much difference
- ullet multi-class classification predicts categorial ${\mathcal Y}$
- taking values in $C = \{c_1, ..., c_k\}$
- C_i 's are called
- examples:

Zipcode (10005, 98195,...)

All English words

ullet a **k-class classifier** predicts ${\mathcal Y}$ given ${\mathcal X}$

Embedding c_j 's in real values

- for optimization we need to ${f embed}$ raw categorical C_j 's into real valued vectors
- there are many ways to embed categorial data
 - True->1, False->-1
 - Yes->1, Maybe->0, No->-1
 - Yes->(1,0), Maybe->(0,0), No->(0,1)
 - Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)
 - Ordered sequence:
 (Horse 3, Horse 1, Horse 2) -> (3,1,2)
- we use one-hot embedding (a.k.a. one-hot encoding)

Multi-class logistic regression

data: categorical
$$y$$
 in $\{c_1,\ldots,c_k\}$ with k categories we use one-hot encoding, s.t. $y=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}$ implies that $y=c_1$

model: linear vector-function makes \bar{a} linear prediction $\hat{y} \in \mathbb{R}^k$

$$\hat{y}_i = f(x_i) = w^T x_i$$

with model parameter matrix $w \in \mathbb{R}^{d \times k}$ and sample $x_i \in \mathbb{R}^d$

$$f(x_{i}) = \begin{bmatrix} f_{1}(x_{i}) \\ f_{2}(x_{i}) \\ \vdots \\ f_{k}(x_{i}) \end{bmatrix} = \underbrace{\begin{bmatrix} w_{1,0} & w_{1,1} & w_{1,2} & \cdots \\ w_{2,0} & w_{2,1} & w_{2,2} & \cdots \\ \vdots & & & & \vdots \\ w_{k,0} & w_{k,1} & w_{k,2} & \cdots \end{bmatrix}}_{w^{T}} \underbrace{\begin{bmatrix} 1 \\ x_{i}[1] \\ \vdots \\ x_{i}[d] \end{bmatrix}}_{x_{i}} = \begin{bmatrix} w_{1,0} + w_{1,1}x_{i}[1] + w_{1,2}x_{i}[2] + \cdots \\ w_{2,0} + w_{2,1}x_{i}[1] + w_{2,2}x_{i}[2] + \cdots \\ \vdots \\ w_{k,0} + w_{k,1}x_{i}[1] + w_{k,2}x_{i}[2] + \cdots \end{bmatrix}}_{x_{i}}$$

$$w = \begin{bmatrix} w[:,1] & w[:,2] & \cdots & w[:,k] \end{bmatrix}$$

Logistic regression

2 classes

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

k classes

$$\mathbb{P}(y_i = c_1 \mid x_i) = \frac{e^{w[:,1]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

$$\mathbb{P}(y_i = c_k | x_i) = \frac{e^{w[:,k]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

Maximum Likelihood Estimator

maximize_w
$$\frac{1}{n} \sum_{i=1}^{n} \log(\mathbb{P}(y_i | x_i))$$

$$\text{maximize}_{w \in \mathbb{R}^d} \ \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right)$$

$$\text{maximize}_{w \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right) \qquad \text{maximize}_{w \in \mathbb{R}^{d \times k}} \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k \mathbf{I}\{y_i = c_j\} \log \left(\frac{e^{w[:,j]^T x_i}}{\sum_{j'=1}^k e^{w[:,j']^T x_i}} \right)$$

$$\mathbf{I}\{y_i=j\}$$
 is an indicator that is one only if $y_i=j$

Questions?