Logistics:

- HWO graded, for regrade request submit it through GradeScope within 7 days
from release of grade.

- HW1 due Tuesday Jan 25th midnight

Lecture 9:
Simple variable selection:
LASSO for sparse regression

- Yet another hyper-parameter/family of model classes,
but with a special property
- # of features in polynomial regression
- Regularization coefficient A for ridge regression

- Regularization coefficient A for LASSO w



SparSIty ’&}LS = arg mlnz (yz — x?w)2
1=1
= Vector w is sparse, if many entries are zero

= Avector w is said to be k-sparse if at most k entries are
non-zero

- We are interested in k-sparse w with k << d
= Why do we prefer sparse vector w in practice?



Sparsity WL =argmin Yy (y; — xq;Tw)2
1=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w
A T

Yi= Wig i

d N~ o o
=) Wislil xx[j] = 2, Wislilxxlj]
=1 Jwislj1#0

Computational complexity decreases from 2d to 2k for k-sparse W | q



SparSIty Wrs = arg minz (yi —
1=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Tw)2

)

Lot size

Single Family
Year built

Last sold price

Dishwasher
Garbage disposal
Microwave
Range / Oven

Last sale price/sqft

Refrigerator

Finished sqft
Unfinished sqgft

Washer
Dryer

Finished basement sqft Laundry location

# floors Heating type
Flooring types Jetted Tub
Parking type Deck
Parking amount Fenced Yard
) B . Cooling Lawn
How do we find “best” subset of [Heating | Garden
features useful in predicting the Exterior materials Sprinkler System
price among all possible Roof type style

combinations?



Finding best subset of features that
explain the outcome/label: Exhaustive

 Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error

 Problem?
* Any ldeas?



Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Forward Greedy
1: T« @
2:Forj=1,...,kdo

n 2
3: j* « arg min min ( . — ] X )
j*—argminmin ) (y— D, wljlx ¥l
i=1 JETU{ZL}
4: T « T U {j*}

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as important

L ots of other variants, too.



Finding best subset: Reqgularize

Recall that Ridge regression makes coefficients small

n

~ . 2

Wridge — al'g m,(;nz (yz - CE?U)) + )\HU)H%
1=1
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Thresholded Ridge Regression

n
AN . 2
Wridge — Ar'g mu%nz (yz - x?w) + )‘HwH%

1=1

- Why don’t we just set small ridge coefficients to 0?
* Any issues?
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Thresholded Ridge Regression

r&}'ridge — arg mu%nz (yz — x;l“w)z + )‘Hng
=1
- Consider two related features (bathrooms, showers)
. Consider w[bath] = 1 and w[shower]| = 1, and
w[bath] = 2 and w[shower] = 0,
which one does ridge regression choose?
(assuming #bathroom=#showers in every house)
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Thresholded Ridge Regression

- Consider two related features (bathrooms, showers)

* Issue with thresholded ridge regression is that
ridge regression prefers balanced weights between similar features

- What if we didn’t include showers? Weight on bathrooms increases, and it
should have been selected.

- We want a feature selection scheme that selects one of (#bathroom) or
(#showers) automatically,
using the fact that if you delete #showers #bathroom is an important feature

S S \ o . R . N
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» There is a better regularizer for sparse regression,
that can perform the feature selection automatically.



Ridge vs. Lasso Regression

* Recall Ridge Regression objective:

~ . 2
Wridge — AI'g mu%nz (yz — x?w) + )‘HwH%
i=1
. sensitivity of a model w is measured in squared £, norm ||w||3

* A principled method to get sparse model is Lasso with
regularized objective:

2
Wigsso = arg mmz —z;w) + A|w|)
=1

- sensitivity of a model w is measured in £; norm:

”W”l = ‘W[]] ‘ fp—normofavectorweRdis

. 1/
/=1 Iwll, Z Iwli11P)"




Example: house price with 16 features
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e Regularization path for Lasso shows that weights drop to exactly zero as A increases
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1. Model selection: choose A based on cross validation error

2. Feature selection: keep only those features with non-zero
(or not-too-small) parameters in w at optimal A

3. retrain with the sparse modeland A = 0

why do we need to retrain?



Example: piecewise-linear fit

ho(z)
* We use Lasso on the piece-wise linear example p,(x)

Step 1: find optimal A*
minimize,, L (w) + A||w||,

=1
= [z +1.1-0.14]"

Step 3: retrain

minimize,, Z£(w)
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Penalized Least Squares
Ridge : 7(w) = [Jw|[3 ~ Lasso : r(w) = ||w]|;

W, = arg minz (yi — x;rw)Q + Ar(w)

w
1=1



Penalized Least Squares

e Regularized optlmlzatlon

Ridge : r(w) = HwH2
Lasso : r(w) = ||w||1

e For any A* > 0O for which w, achieves the minimum, there exists a u* > 0 such that
the solution of the constrained optimization, WC, is the same as the solution of the

regularized optimization, W , where

W= argmmz (i—x'w)*  subjectto r(w) < u*
i=1

e so there are pairs of (4, #) whose optimal solution 717,, are the same
for the regularizes optimization and constrained optimization




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

« the level set of a function £ (w, w,) is defined

as the set of points (w;, w,) that have the same
function value

» the level set of a quadratic function is an oval
e the center of the oval is the least squares

. A N w2
solution w,_, = Wy g 4 .
1-D example with quadratic loss W<
L (wy)
1

»
L

| |
a b wi
Level set of £ (w;) at value 1 is [a,b]




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to ||w|; < u

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
Ll ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond Vﬁ‘;z
{(Wl,Wz)‘ (Wil + 1wy | <}

« when y is large enough such that [[Ww, - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| |||, < u} —>



Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

e As u decreases (which is equivalent to
increasing regularization A) the feasible
set (blue diamond) shrinks

* The optimal solution of the above e @
optimization is ? @

feasible set: {w € R? | Wil Lu}—>




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

For small enough 1, the optimal solution
becomes sparse

This is because the L-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

feasible set: {w € R?| ||w||, < u} —>




Penalized Least Squares

e Lasso regression finds sparse solutions, as L-ball is “pointy”

» Ridge regression finds dense solutions, as L,-ball is “smooth”

n n
C e . T 2 < v - T 2
minimize,, E (w X; — y,-) minimize,, Z,(W X — )’i)
i=1 i=1

subject to ||w|l, < u subject to ||w||§ < u



Ridge vs. Lasso

- Ridge
* Very fast:
« Closed form solution if used with linear models

- Even with non-linear and complex loss, optimization is
fast for squared £, regularization (to be taught later)

Gives regularized parameters that avoid overfitting

- Lasso
- Slower than Ridge:

* It is a non-smooth optimization which is slower (to be
taught later)

- Gives sparse parameters



Questions?



Logistics:
- HW2 is our and due Tuesday Feb 11th Friday,

- it covers up to stochastic gradient descent

- It is quite involved, so we are giving you more time, but start early!
- Return to in-person on Monday 1/31/2022

- Sections will be in person starting next week and OHs will be hybrid

Lecture 10:
Convexity

- When is an optimization (or learning) easy/fast to solve?




Recap: Ridge vs. Lasso

- Ridge

n
minimize,, Z wlx; = y)* + Allwll3
i=1
 Very fast:
« Closed form solution if used with linear models

. Even with other loss functions, optimization is fast for squared ¢,
regularization, because ||w||% is convex and smooth

« Lasso

n
minimize,, Z (wlx, — yi)2 + Allwll,
i=1
- Slower than Ridge:
* Requires iterative optimization algorithm like sub-gradient descent
. In particular, it is slower because ||w||; is convex but non-smooth



What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

(1 = D)x + Ay



What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

| $O




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € R9and \ € [0, 1]

£ (I = A)fx) + 4 (y)




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € R9and \ € [0, 1]

J)

—
[\




Convex functions and convex sets?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + \y) < (1 = N)f(2) + Af(y)
for all z,y € R%and A € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4l : f(x) <t} is convex

Graph of fid defined as {(x, 1) : f(x) =t}
Epigraph of fis defined as {(x,7) : f(x) <t}
J&x) Jx)




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)

N

J)




More definitions of convexity

A function f:R? — R that is twice-differentiable everywhere is convex if

sz(ilf) = 0 for all x € dom(f)

Jf(x)
Jx)
X X
df(x) df (x)
dx dx
X X
d2f(x) d*f(x)
dx? dx?
X




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + \y) < (1 = N)f(2) + Af(y)
for all z,y € R%and A € [0, 1]

A function f :R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) = f(z) + Vf(z)' (y — 2) for all z,y € dom(f)

A function f : R? — R that is twice-differentiable everywhere is convex if
V2f(z) = 0 for all x € dom(f)




Why do we care about convexity?

Convex functions
- All local minima are global minima

- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N

We only need to find a point with Vf(x) =0, For non-convex functions, a stationary point
which for convex functions implies that it is with Vf(x) = O could be a local minima,
a local minima and a global minima a local maxima, or a saddle point




Gradient Descent on min f(w)
w

Initialize: wg =0
fort=1,2,...
w1 = wr — NV f(wy)

Convex Function Non-convex Function

e Strength: Can find global minima of a convex function efficiently
e Weakness: Can only be applied to smooth functions
* j.e., functions that is differentiable everywhere,

e otherwise Vf(x) is not defined and gradient descent cannot be applied



Sub-Gradient

Definition: a function is non-smooth if it is not differentiable everywhere

Definition: a vector g € R?is a sub-gradient at x if it satisfies

f() = f(x) + g'(y — x) forally € R?
Non-smooth Convex Function
Smooth Convex Function FOO) +87(v = x) withg € [=2, — 1]

) + g (y —x) z e [-1/2,1]

X -

. « for non-smooth convex functions
« for smooth convex functions, ’

+ the minimum is achieved at
points where sub-gradient set

* the global minimum is achieved at points includes the zero vector
where gradient is zero

 gradient is the unique sub-gradient, and



Sub-Gradient Descent for non-smooth functions

Initialize: wg =0
fort=1,2,...
Find any ¢; such that f(y) > f(ws) + ¢, (y — wy)

Wi < W — 08,

Convex Function Non-convex Function

* Strength: finds global minima for non-smooth convex functions

* Weakness: it is slower than gradient descent on convex smooth functions,
because the gradient do not get smaller near the global minima

e Instead of last iterate w,, we use the best one we saw in all iterates
e The stepsize needs to decrease with 7



Coordinate descent

Initialize: wg = 0
fort=1,2,...
Let it =1 % d

of(w,)

Wil < wili] —n, owli]



Optimization

= You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

= Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Questions?



Logistics:

Lecture 11:
Classification with
logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

W



Training data for a binary classification problem

4 ..
(<
= o
a ¢
2 B ...
@ o ®

0 a
z|2] R

o : LA ..'oo ° a e o

-2 "!': °2 ®s o0 ° . ®e
Bl e
-4 - “e
%
o
4 -3 -2 0 1 2 3 4

e in this example, each input is x; € R?
e Red points have label y,=-1, blue points have label y,=1

« We want a predictor that maps any x € R? to a predictiony € {—1, + 1}



Example: linear classifier trained on 100 samples
simple decision boundary at wlix+b=0
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e linear model: wy + wx[1] + w,x[2]

e predict using § = sign(b + x'w)
e How do we find such a linear classifier that fits the data?



Binary Classification with 0-1 loss

e Learnalinearmodel:f:x—y=>b+x'w
- X —input/features, y € {—1, 4+ 1} —label in target classes
» Prediction: sign( f(x))

« Ideal loss function Z(7y, y):

* 0-1 loss, because we care about how many were classified correctly
 What are weaknesses?

. 0 §<0 - _ 0 >0
é(y,—l):{ 11 §>0 {9, +1) {-|-1 y <0

30

30

25 | 254

20 1 201

] prediction g “1 prediction g

10 4 10

0.5 1 05 4

N N
0.0 T T T T 0.0 T T - -
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Binary Classification with 0-1 loss

If we know the underlying distribution, (x, y) ~ Py and if we do not

restrict ourselves to any function class, then we could find the optimal
predictor called Bayes optimal classifier

° fBayes(x) — arg max |]j)Y|X(Y — j} |X — X)
ye{-L1}
Claim: Bayes optimal classifier achieves the minimum possible
achievable true error

True error: Ex [£(f(X), Y)] = P( sign(f(X)) # Y)
Proof:
We can write the true error of a classifier f( - ) using chain rule as

optimal classifier minimizes this true error, at every x
Jopt®®) = arg min  Py(Y # y|x)

But, we do not know Py, and 0-1 loss is cannot be optimizes
(to be explained in lecture 11)



Binary Classification with 0-1 loss

If we know the underlying distribution, (x, y) ~ Py and if we do not

restrict ourselves to any function class, then we could find the optimal
predictor called Bayes optimal classifier

e JBayes(¥) =arg max Py (Y =y[X=x)
j\)E{—l,l}

Claim: Bayes optimal classifier achieves the minimum possible
achievable true error

True error: Ey [£(f(X), Y)] = P( sign(f(X)) # Y

Proof:

We can write the true error of a classifier f( - ) using chain rule as
ExA1{Y # fQX)}] = Ex[Ey[H{Y # f0)} X = x| = Ex| Pyx(Y # f(0) | X = %) |

optimal classifier minimizes this true error, at every x
JoptX) = arg min Py (Y # y|x)

ye{-1,1}
But, we do not know Py, and 0-1 loss is cannot be optimizes
(to be explained in lecture 11)



Binary Classification with square loss

 Learnalinearmodel:f:x —»y=b+x'w
X input/features, y € {—1, + 1} label in target classes
« Prediction: sign( f(x))
. Square loss function Z(b + x'w,y) = (y — xTw — b)?
* This is the same as tr,?ating this as a linear regression problem
(w, /E) = arg min z (y; — (b + xiTw))2
b,w

i=1
« What is the strengths and weaknesses?

N A 2 A - 2
cy,—1) = 3+ 1) .+ = @G-1
. Square loss 55 |
: 0-1 loss 10-
00—3 -2 1 0 1 2 3 :/y\ 0,0_3 -2 ) 0 1 2 3 37\
true y true y
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Looking for a better loss function

- we get better results using loss functions that

- approximate, or captures the flavor of, the 0-1 loss

* is more easily optimized (e.g. convex and/or non-zero
derivatives)

- concretely, we want a loss function

« with ¢(y, —1) small when § < 0 and larger when g > 0
. with /(y,1) small when ¢ > 0 and larger when g < 0

- Which has other nice characteristics, e.g., differentiable or
convex



Sigmoid loss 75, y) =
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differentiable approximation of 0-1 loss

but not convex in y
the two losses sum to one
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softer (or smoothed) version of the 0-1 loss

=1




Logistic loss £(y, y) = log(1 + e ™)

0(y,—1) = log(1 + %) 0(9,+1) = log(1 +e77)
10-// 10 \\
OO-3 -2 3 0 1 2 By 00-3 -2 1 0 ] 2 y

true y true y

« differentiable and convex in y
e approximation of 0-1
* Most popular choice of a loss function for classification problems



Logistic regression for binary classification

.Data D = {(x; e R%,y, € {—1,+ 1D},

. Model: y =x'w + b

. Loss function: logistic loss Z(3, y) = log(1 + e¢™?)
- Optimization: solve for

(/b\, W) = arg min Z log(1 + e_yi(b+xiTW))
A

* As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wlix+b=0
using gradient descent T » ‘\
 Prediction: sign(b + XTW) 2 ...’.j::
T2 e
S ";’.i .'. % e iy .. °
. pe 1
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Example

4
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i - T -

—_ 1} = e

X 0 - + :. -+#
. - TRy 7
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_2 Ja=)
-3

-5 -4 -3 -2 -1 0O

x[1]

1 2

data: x in 2-dimensions, y in {+1,-1}

features: polynomials

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features
ho(iIZ) —
hi(z) = x[1]
ho(x) = x|2]
hs(x) = z[1)?
hy(z) = x[2]?

woho(z) + wihi(x) +waha(x) + - -




53

x[2]

x[2]

=5 -4

-3 -2 -10
x[1]
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Learned decision boundary

f(x) :wo+ wiz|l] + wex|2) ;
: \ - - -
| U 7 l X 0 - + -
j ‘ : 1 . + + +
| | 2| - T
33[2] © I -3 R
| ! ~5 -4 -3 -2 -1
T|1] x(1]

Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
e Simple classifier models have smooth
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Learned decision boundary

Flay o + wiz)] + wsal)

' 4
. . / 3 -
_— . - 2 - e
‘ _,,:—_'7": .
¥ ';" , ,’ 7 . { 1
S L 0

x[2]

1 - TR 7
Ll - +
.4 -3
. -5 -4 -3 -2 -1 0 1 2
wll] X[1]

Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
e Simple classifier models have smooth


https://www.google.com/search?ei=Wxu9XPS3BYmt0gLrkoyYDQ&q=0.23+1.12x+-1.07y&oq=0.23+1.12x+-1.07y&gs_l=psy-ab.3...11199.11199..11397...0.0..0.33.33.1......0....1..gws-wiz.......0i71.J2TOrs9fhMw
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Learned decision boundary

f(x) = wo—l—wlx[l]—i—wgscz[Q] . ;
| " , Y -
y = -
~ s = -
< 0 - *+ 4 = #
1 e I
._.2 - — +
! 352 -3 =2 -1 0 1 2
&[] x[1]

Coefficient

ho(x) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
e Simple classifier models have smooth


https://www.google.com/search?ei=Wxu9XPS3BYmt0gLrkoyYDQ&q=0.23+1.12x+-1.07y&oq=0.23+1.12x+-1.07y&gs_l=psy-ab.3...11199.11199..11397...0.0..0.33.33.1......0....1..gws-wiz.......0i71.J2TOrs9fhMw
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Adding quadratic features

F p

]

|
" |
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. - = -
1 -t

0 - +I -+#
. I
N - + +
-3

-5 -4 -3 -2 -1 0 1 2

x[1]

Coefficient

ho(X)
hi(x)
ha(X)
h3(x)
ha(x)
hs(x)

1
x[1]
x[2]

(x[1]1)?
(x[2])?
x[1]x[2]

e Adding more features gives more complex models
e Decision boundary becomes more complex

1.68
1.39
-0.59
-0.17
-0.96
Omitted




Adding quadratic features
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4

3 - =

, - - -

3 - %3 Ted

. - B

ol - + +

35 -4 -3 -2 -1 0 1 2 3

x[1]

ho(x) 1 1.68
h1(x) x[1] 1.39
ha(x) x[2] -0.59
h3(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted

e Adding more features gives more complex models
e Decision boundary becomes more complex
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e Adding more features gives more complex models
e Decision boundary becomes more complex

Adding quadratic features ,
, - - -
5 10 - - Ty g
< 0 - + 4 =
. - B
ol = + +
35 -4 -3 -2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
h1(x) x[1] 1.39
ho(x) x[2] -0.59
hs(x) (x[1])2 0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted



Addlng hlgher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hg(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[21)

21.6
= Coefficient values

getting large

x[2]

Overfitting leads to
non-generalization
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Adding higher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hg(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?

(x[2])?

(x[1])3

(x[2])?

(x[1])*

(x[2])*

(x[1])®

(x[2])®

(x[1])®

(x[21)

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization
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Adding higher degree polynomial features

Coefficient
Value
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hig(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[2])®

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization

* Qverfitting leads to very large values of
f(il?) — woho(ZE) + wlhl(x) + thQ(Qj) 4+ ...




Regularization path

. 2 2 .
£, regularizer: |W||3 = [wy |”+ -+ + | wy] 7 regularizer: [|w|; = |wi| + - + |wq]
3 3
— best this — best this
2 — disappointed — awesome review 2 — disappointed — awesome review
<§'_‘ — hate —) S — hate —3)
=
1
2 hd
GC_, L G| R
o— Q
s Q /
= O
W v
@) Q 2
O @)
O -3
~% 100 200 )\ 300 400 500 600 4 100 200 300 400 500 600

* Absolute regularizer (a.k.a L1 regularizer) gives sparse
parameters, which is desired for interpretability, feature
selection, and efficiency



Probabilistic interpretation of logistic regression

just as Maximum Likelihood Estimator (MLE) under linear model and
additive Gaussian noise model recovers linear least squares,

we study a particular noise model that recovers logistic regression

a probabilistic noise model for Boolean labels: -
Ply,=+1|x) = | 4 o' /
o o) 1 :
y, = — X:) = -
’ l 1+ e’ T
with a ground truth model parameter w € R wl X;
this function 6(z) = — is called a logistic function (not to be
e <

confused with logistic loss, which is different) or a sigmoid function

if we know that the data came from such a model, but do not know the
ground truth parameter w € IRd, we can apply MLE to find the best w

this MLE recovers the logistic regression algorithm, exactly



Maximum Likelihood Estimator (MLE)

e if the data came from a probabilistic model model: 1 1
1 + e—wlz 1 + ewta

7

)

P(yz—+1|xz) P(yz_—1|:131)
* log-likelihood of observing a data point (x;, ;) is

log (ﬁ if y; = +1
log-likelihood = log (P(yz\:vz)) — 14e—w' =
log < L

’LU s

 Maximum Likelihood Estimator is the one that maximizes the sum of all log-
likelihoods on training data points

WMLE = argmax Py ooy X oo x,})

= arg max H P(y;|x;)

| (independence)
=

1

1
= 1 1
argmax lyzl og 14 ov'm + lyz_l og o, e_wa)

(substitution)



notice that this is exactly the logistic regression:

1 r T
Wiogistic = arg mvin ;( Z log(1 +¢e"™ %) + Z log(l +e™" xi))

once we have trained a model Wlogistic, we can make a hard prediction ¥
of the label at an input example x

| +1 it P(+1|x) > P(—1|x)
V.o —1 otherwise

f . 1 1

> -
= < —I_l lf 1"'6_me T 1+€me
—1  otherwise

11 ifl<ew®
—1 otherwise

\

= sign(w’ z)



Understanding the sigmoid

g(wo + Zwiﬂfi) =

WO='2, W1

=-1

1

w,=0,

W1 ='1

e

.

]
0.9 ]
0.8 ]
0.7 ]
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0.4 ]
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1 4 w0t wiz

wy,=0, w,=-0.5

]
0.9
08
0.7
0.6
05
0.4
03
0.2
0.1
% 4 2 0

/




Multi-class regression



How do we encode categorical data y?

e so far, we considered Boolean case where there are two categories

e encoding y is simple: {+1,-1}, as there is not much difference

 multi-class classification predicts categorial Y
. taking values in C = {Cl, ceesy Ck}

e C:’s are called

J 7
. ' ‘U@‘ | :
+ examples: . ?M ]YQQMQ5 All English words
' MAIL ELY I\I 'sgllng)su
Country of birth Zipcode
(Argentina, Brazil, USA,...) (10005, 98195,...)

 ak-class classifier predicts Y given X
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Embedding ¢;’s in real values

« for optimization we need to embed raw categorical C j’s
Into real valued vectors
* there are many ways to embed categorial data
e True->1, False->-1
* Yes->1, Maybe->0, No->-1
* Yes->(1,0), Maybe->(0,0), No->(0,1)
* Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

* Ordered sequence:
(Horse 3, Horse 1, Horse 2) -> (3,1,2)

* we use one-hot embedding (a.k.a. one-hot encoding)

adard basis vector in k— dimension

1-h
encoding TRy | o) | e | bgsl) | g
1
1

Country of birth
\ (Argentina, Brazil, USA,...) ] ‘

Y |
70 196 categories 196 features



Multi-class logistic regression

e data: categorical yin {c, ..

we use one-hot encoding, s.t. y =

oSO O

0

., C} with k categories

implies that y = ¢,

e model: linear vector-function makes a linear prediction y € R*

f’i — f(xi) = WTX,‘

with model parameter matrix w € R%* and sample X; € R4

fi(x)|

fay = |29

Wio Wia Wi -

Woo Wai1 Woo -

i)

Wio Wka1 Wk2

WT

w=|wl:, 11 wl,2] - w[: k]
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1

1&[1]

Xi

_xi[d]_

wy o+ w1+ wx[2] + -

Wy o + Wo 15[ 1] + wy x[2] + -+

Wk’o + Wk’l.xi[l] + Wk’le-[Z] + .-




* Logistic regression

2 classes
POi= =1 =10
Py, =+1]x) = [+ ov's

k classes
ew[:,l]Txi
I]:D(y, = |xi) _ eW[:,l]Txi 4o 4 ew[:,k]Txi
ew[:,k]Tx,-
[F"(y, = Cklxi) =

el x4 ewliklTx;

Maximum Likelihood Estimator

. 1 ¢
maximize, — Z log(P(y; | x;)
n

1 & 1
maximize — lo (
weR Z . l+e

T
. —YiW" X
i=1
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i=1

)

ew[:,j]Txi

1 n |k
maximize, . paxi— I{y, = c¢;}lo (
weR n Z Z l ] g Zk eW[3,j/]Txi
i=1 j=1 j'=1

I{y; = j} is an indicator that is one only if y; = j

)



Questions?



