
Lecture 8: 
Model selection 
using Cross-validation

Logistics

- Question from a student: can we get access to the recording from the past offerings of CSE446? 

- For FERPA reasons, we are not able to release them.

- We put other public video lectures in the course website that covers a free online textbook

- Office hours are there to help you not just with homework for more generally.




Parameter and hyper-parameter

• A model class is set of functions, each function is indexed by its 
parameters representing the function
• e.g., a model class all degree-  polynomials in } 

each function in that class is represented (or indexed) by parameter 
, which can be also written more explicitly as 

•
• Parameter is what is optimized when training a model  

e.g.,  

Fp = { p ℝ

(b, w) ∈ ℝp+1

Fp = {fb,w : ℝ → ℝ | fb,w(x) = b + w1x + ⋯ + wpxp,  for some(b, w) ∈ ℝ1+p}

( ̂b p, ̂w p) = arg min
(b,w)∈ℝ1+p

n

∑
i=1

( yi − (h(xi)Tw + b) )2

F3 ⋯

Usually several model classes form  
a nested hierarchy of classes with increasing complexities

F2F1



Parameter and hyper-parameter
• A family of model classes is a set of model classes, each class indexed by 

its hyper-parameter representing a model class
• e.g., a family  is a set of model classes 

with hyper-parameter , where  is a class of degree-  
polynomials

• Hyper-parameter is usually fixed during training  

e.g., 

• And we run multiple training for  
multiple choices of the hyper-parameter

ℱ = {Fp |p ∈ {1,2,…}}
p ∈ {1,2,…} Fp p

̂fp = arg min
f∈Fp

n

∑
i=1

( yi − f(xi) )2

Error

Hyper-parameter p



Hyper-parameter for ridge regression

• Hyper parameter does not have to represent a model class
• It can represent the algorithm being used also
• hyper-parameter  for ridge regression

• e.g., a linear model class  
trained by minimizing a regularized loss 

•  is a hyper-parameter, because it is  
fixed during training

• And we run multiple training for  
multiple choices of the hyper-parameter

λ
F1 = {f(x) = b + xTw | (b, w) ∈ ℝd+1}

( ̂b λ, ̂w λ) = arg min
(b,w)∈ℝd+1

n

∑
i=1

(yi − (b + xT
i w))2 + λ∥w∥2

2

λ

Error

log10(λ)

Test error

Train error



Model selection

• Model selection asks the following question: among all the models we 
got for different hyper-parameters, how do we choose the “best” one to 
deploy?

• Wrong approach 1: 
• Randomly split the dataset into Train Set and Test Set with 80/20 split
• Train models for various hyper-parameters and report the Train Error 

and Test Error
• Deploy the model  achieving minimum Test Error
• Report its Test Error as  

an approximation of  
the True Error

• Issue: 
• Test Error is underestimated
• Relying on one data split  

has large variance

̂w p*

Error

Hyper-parameter pp*



Why using test error for model selection 
gives under estimation of the true error

• Consider a simple experiment where we have two coins 
• Bern  and Bern   such that  
 
 

• I want to find out  given  samples from each
• Using test set to both select the model and report the test error is same as

•
Computing the empirical averages  and  

and reporting the smaller one, i.e., 
• We can show that this reported value is strictly smaller than what we 

wanted in expectation: 
• For example, if , then 

xi ∼ (p) yi ∼ (q)

min{p, q} n

̂p =
1
n

n

∑
i=1

xi ̂q =
1
n

n

∑
i=1

yi

min{ ̂p, ̂q}

𝔼[ min{ ̂p, ̂q} ] < min{p, q}
n = 1 𝔼[min{ ̂p, ̂q}] = 𝔼[min{x1, y1}] =

<latexit sha1_base64="z7RtAw+//GL5UntKVp9ThdX7EDU="></latexit>

xi =

⇢
1 with probability p
0 with probability 1� p

<latexit sha1_base64="QcCqfo5smLazFg1huiO2V8uH+Aw="></latexit>

yi =

⇢
1 with probability q
0 with probability 1� q



To avoid underestimating test error

• Never use the test set for 
• training any model, or
• tuning hyper-parameter = model selection

• Test set should only be used once to report test error (as an 
approximation of the true error) in the end

• Idea: 
• use part of training data (called Validation Set) to estimated the 

error and for model selection
• For example: 
 

• Train set: train (multiple) models for different hyper-parameters
• Validation set: compute validation error, to be used in model 

selection 
• Test set: use it once in the end to report test error for the selected 

model

TESTTRAIN VALIDATION



• Consider a validation set with 1 example:
•      : dataset

•  : train set with -th data point  moved to validation set

• Learn model  with  dataset:   

 
 
 
 

• Validation error:              

• It is an unbiased estimate of the error  
               

• but, variance of  is too large. Why? Validation set is small
• Any ideas?

𝒟
𝒟∖{j} j (xj, yj)

f𝒟∖{j} 𝒟∖{j} f𝒟∖{j} = arg min
f ∑

i∈𝒟∖{j}

(yi − f(xi))2

errorj ≜ (yj − f𝒟∖{j}(xj))2

errortrue( f𝒟∖{j}) ≜ 𝔼(x,y)∼Px,y
[(y − f𝒟∖{j}(x))2]

errorj

(LOO) Leave-one-out cross validation

𝒟 j

Train Set = 𝒟∖{j}

Notation:  
 denotes setminusA∖B = A ∩ BC

Validation Set =  {(xj, yj)}



(LOO) Leave-one-out cross validation

• To reduce the variance of the validation error, use instead 
• LOO cross validation: Average over all possible single sample validation 

set  for :


• Train  times:    
for each data point you leave out, learn a new classifier 


• Validation error is now averaged over all different splits:  

{j} j ∈ {1,…, n}
n

f𝒟∖{j}

errorLOO−CV =
1
n

n

∑
j=1

errorj =
1
n

n

∑
j=1

(yj − f𝒟∖{j}(xj))2



LOO cross validation is (almost) unbiased estimate!

• When computing LOO-CV error, we only use data points to train

• So it’s not an estimate of true error of learning with  data points 

       true error = 
• Usually (slightly) pessimistic – learning with less data typically gives worse 

answer. 
• Leads to a (slight) over estimation of the error compared to true error 

• LOO-CV is almost unbiased! Use LOO-CV error for model selection!!!

• E.g., picking λ

n − 1
n

𝔼X,Y[ (Y − f𝒟(X ))2 ]

errorLOO−CV

errortrain

log10(λ)



Computational cost of LOO

• Suppose you have 100,000 data points
• say, you implemented a fast version of your learning algorithm

• Learns in only 1 second 
• Computing LOO will take about 1 day
• In general, LOO takes  times longer than training one model
• Any ideas?

n



Use k-fold cross validation
• Randomly divide data into k equal parts


• D1,…,Dk


• For each i

• Learn model  using data point not in 


• Estimate error of  on validation set : 
 

• k-fold cross validation error is average over data splits: 
 

• k-fold cross validation properties:

• Much faster to compute than LOO-CV as 

• More (pessimistically) biased – using much less data, only  

• Usually, k = 10

f𝒟∖𝒟i
𝒟i

f𝒟∖𝒟i
𝒟i

k ≪ n
n −

n
k

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2

𝒟 = 𝒟1 𝒟2 𝒟3 𝒟4 𝒟5

f𝒟∖𝒟3

errork−fold =
1
k

k

∑
i=1

error𝒟i



Recap

> Given a dataset, begin by splitting into  
 

> Model selection: Use k-fold cross-validation on TRAIN to 
train predictor and choose hyper-parameters such as λ 
 
 
 
 
 

> Model assessment: Use TEST to assess the accuracy of the 
model you output
■ Never train or choose parameters based on the 

test data

TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2



Example 1
• You wish to predict the stock price of zoom.us given 

historical stock price data ’s (for each -th day) and  
the historical news articles ’s 

• You use all daily stock price up to Jan 1, 2020 as TRAIN 
and Jan 2, 2020 - April 13, 2020 as TEST

• What’s wrong with this procedure?  

• train and test data are from different distributions 
and has sampling bias (of time)

yi i
xi

http://zoom.us


Example 2
• Given 10,000-dimensional data and n examples, we pick a 

subset of 50 dimensions that have the highest correlation 
with labels in the training set: 
 
 

• After picking our 50 features, we then use CV with the 
training set to train ridge regression with regularization λ 

• What’s wrong with this procedure?  

• We are underestimating the error as the features have 
been chosen with the score that depends on the 
validation set

50 indices j that have largest 
|
Pn

i=1 xi,jyi|qPn
i=1 x

2
i,j



Recap
> Learning is…

– Collect some data
> E.g., housing info and sale price

– Randomly select TEST set and split the remaining dataset into TRAIN, 
and VAL (multiple splits are needed if doing cross validation)
> E.g., 80%, 10%, and 10%, respectively

– Choose a hypothesis class or model
> E.g., linear with non-linear features (also called transformations)

– Choose a loss function
> E.g., least squares with ridge regression penalty on TRAIN

– Choose an optimization procedure
> E.g., set derivative to zero to obtain estimator, cross-validation 

on VAL to pick num. features and amount of regularization
– Justifying the accuracy of the estimate

> E.g., report TEST error



Questions?



Questions?



Questions?


