Logistics

- Question from a student: can we get access to the recording from the past offerings of CSE44
 - For FERPA reasons, we are not able to release them.
- We put other public video lectures in the course website that covers a free online textbook
- Office hours are there to help you not just with homework for more generally.

Lecture 8: Model selection using Cross-validation

Parameter and hyper-parameter

- A model class is set of functions, each function is indexed by its parameters representing the function
 - e.g., a model class $F_p=\{\text{all degree-}p\text{ polynomials in }\mathbb{R}\}$ each function in that class is represented (or indexed) by parameter $(b,w)\in\mathbb{R}^{p+1}$, which can be also written more explicitly as
- $F_p = \{ f_{b,w} : \mathbb{R} \to \mathbb{R} \mid f_{b,w}(x) = b + w_1 x + \dots + w_p x^p, \text{ for some}(b, w) \in \mathbb{R}^{1+p} \}$
 - Parameter is what is optimized when training a model

e.g.,
$$(\widehat{b}_p, \widehat{w}_p) = \arg\min_{(b,w)\in\mathbb{R}^{1+p}} \sum_{i=1}^n (y_i - (h(x_i)^T w + b))^2$$

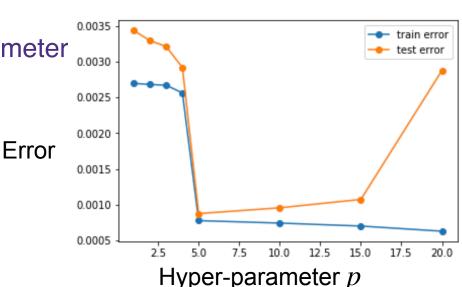
Usually several model classes form a nested hierarchy of classes with increasing complexities

Parameter and hyper-parameter

- A family of model classes is a set of model classes, each class indexed by its hyper-parameter representing a model class
 - e.g., a family $\mathcal{F}=\{F_p\,|\,p\in\{1,2,\dots\}\}$ is a set of model classes with hyper-parameter $p\in\{1,2,\dots\}$, where F_p is a class of degree-p polynomials
 - Hyper-parameter is usually fixed during training

e.g.,
$$\hat{f}_p = \arg\min_{f \in F_p} \sum_{i=1}^n (y_i - f(x_i))^2$$

 And we run multiple training for multiple choices of the hyper-parameter

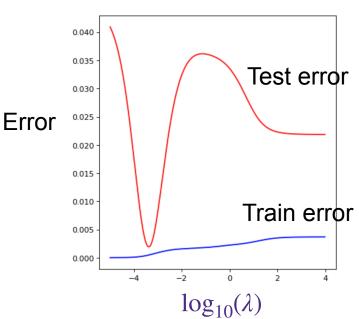


Hyper-parameter for ridge regression

- Hyper parameter does not have to represent a model class
- It can represent the algorithm being used also
- hyper-parameter λ for ridge regression
 - e.g., a linear model class $F_1=\{f(x)=b+x^Tw\,|\,(b,w)\in\mathbb{R}^{d+1}\}$ trained by minimizing a regularized loss

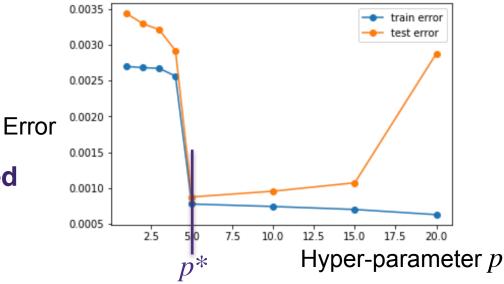
$$(\widehat{b}_{\lambda}, \widehat{w}_{\lambda}) = \arg\min_{(b,w) \in \mathbb{R}^{d+1}} \sum_{i=1}^{n} (y_i - (b + x_i^T w))^2 + \lambda ||w||_2^2$$

- λ is a hyper-parameter, because it is fixed during training
- And we run multiple training for multiple choices of the hyper-parameter



Model selection

- Model selection asks the following question: among all the models we got for different hyper-parameters, how do we choose the "best" one to deploy?
- Wrong approach 1:
 - Randomly split the dataset into Train Set and Test Set with 80/20 split
 - Train models for various hyper-parameters and report the Train Error and Test Error
 - . Deploy the model $\widehat{\,w\,}_{p^*}$ achieving minimum Test Error
 - Report its Test Error as an approximation of the True Error
- Issue:
 - Test Error is underestimated
 - Relying on one data split has large variance



Why using test error for model selection gives under estimation of the true error

- Consider a simple experiment where we have two coins
 - $x_i \sim \text{Bern}(p)$ and $y_i \sim \text{Bern}(q)$ such that

$$x_i = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases} \qquad y_i = \begin{cases} 1 & \text{with probability } q \\ 0 & \text{with probability } 1-q \end{cases}$$

- I want to find out $min\{p,q\}$ given n samples from each
- Using test set to both select the model and report the test error is same as

. Computing the empirical averages
$$\hat{p}=\frac{1}{n}\sum_{i=1}^n x_i$$
 and $\hat{q}=\frac{1}{n}\sum_{i=1}^n y_i$ and reporting the smaller one, i.e., $\min\{\hat{p},\hat{q}\}$

- We can show that this reported value is strictly smaller than what we wanted in expectation: $\mathbb{E}[\min\{\hat{p},\hat{q}\}] < \min\{p,q\}$
- For example, if n=1, then $\mathbb{E}[\min\{\hat{p},\hat{q}\}] = \mathbb{E}[\min\{x_1,y_1\}] =$

To avoid underestimating test error

- Never use the test set for
 - training any model, or
 - tuning hyper-parameter = model selection
- Test set should only be used once to report test error (as an approximation of the true error) in the end
- Idea:
 - use part of training data (called Validation Set) to estimated the error and for model selection
 - For example:

TRAIN VALIDATION TEST

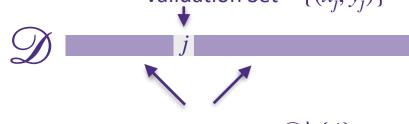
- Train set: train (multiple) models for different hyper-parameters
- Validation set: compute validation error, to be used in model selection
- Test set: use it once in the end to report test error for the selected model

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
- **Notation:**

· 🛭 : dataset

- $A \backslash B = A \cap B^C$ denotes setminus
- $\mathscr{D} \setminus \{j\}$: train set with j-th data point (x_i, y_i) moved to validation set
- Learn model $f_{\mathcal{D}\backslash\{j\}}$ with $\mathcal{D}\backslash\{j\}$ dataset: $f_{\mathcal{D}\backslash\{j\}} = \arg\min_{f} \sum_{i\in\mathcal{D}\backslash\{j\}} (y_i f(x_i))^2$ Validation Set = $\{(x_i,y_i)\}$



Train Set = $\mathcal{D}\setminus\{j\}$

- Validation error:
- $\operatorname{error}_{j} \triangleq (y_{j} f_{\mathcal{D} \setminus \{j\}}(x_{j}))^{2}$
- It is an unbiased estimate of the error

$$\operatorname{error}_{\operatorname{true}}(f_{\mathcal{D}\setminus\{j\}}) \triangleq \mathbb{E}_{(x,y)\sim P_{x,y}}[(y-f_{\mathcal{D}\setminus\{j\}}(x))^2]$$

- but, variance of $error_i$ is too large. Why? **Validation set is small**
- · Any ideas?

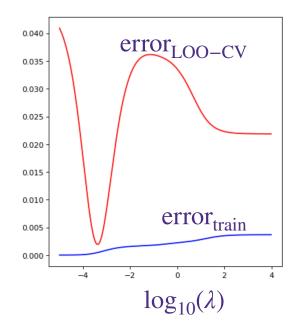
(LOO) Leave-one-out cross validation

- To reduce the variance of the validation error, use instead
- LOO cross validation: Average over all possible single sample validation set $\{j\}$ for $j \in \{1,...,n\}$:
 - Train n times: for each data point you leave out, learn a new classifier $f_{\mathcal{D}\backslash\{j\}}$
 - Validation error is now averaged over all different splits:

$$\operatorname{error}_{\text{LOO-CV}} = \frac{1}{n} \sum_{j=1}^{n} \operatorname{error}_{j} = \frac{1}{n} \sum_{j=1}^{n} (y_{j} - f_{\mathcal{D} \setminus \{j\}}(x_{j}))^{2}$$

LOO cross validation is (almost) unbiased estimate!

- When computing LOO-CV error, we only use n-1 data points to train
 - So it's not an estimate of true error of learning with n data points true error = $\mathbb{E}_{X,Y}[\ (Y-f_{\mathcal{D}}(X))^2\]$
 - Usually (slightly) pessimistic learning with less data typically gives worse answer.
 - Leads to a (slight) over estimation of the error compared to true error
- LOO-CV is almost unbiased! Use LOO-CV error for model selection!!!
 - E.g., picking λ



Computational cost of LOO

- Suppose you have 100,000 data points
- say, you implemented a fast version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day
- In general, LOO takes n times longer than training one model
- Any ideas?

Use k-fold cross validation

- Randomly divide data into k equal parts
 - D_1, \dots, D_k

 $\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2 \mathcal{D}_3 \mathcal{D}_4 \mathcal{D}_5$ $f_{\mathcal{O}_1 \mathcal{O}_2} \mathcal{D}_3 \mathcal{D}_4 \mathcal{D}_5$ Train Train Validation Train Train Train

- For each i
 - Learn model $f_{\mathcal{D}\backslash\mathcal{D}_i}$ using data point not in \mathcal{D}_i
 - Estimate error of $f_{\mathcal{D}\backslash\mathcal{D}_i}$ on validation set \mathcal{D}_i :

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

• k-fold cross validation error is average over data splits:

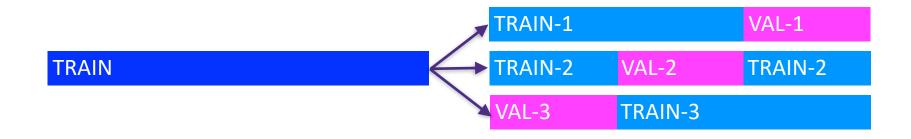
$$\operatorname{error}_{k-\operatorname{fold}} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{error}_{\mathcal{D}_i}$$

- k-fold cross validation properties:
 - Much faster to compute than LOO-CV as $k \ll n$
 - . More (pessimistically) biased using much less data, only $n \frac{n}{k}$
 - Usually, k = 10

Recap

> Given a dataset, begin by splitting into

> Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose hyper-parameters such as λ



- Model assessment: Use TEST to assess the accuracy of the model you output
 - Never train or choose parameters based on the test data

Example 1

- You wish to predict the stock price of <u>zoom.us</u> given historical stock price data y_i 's (for each i-th day) and the historical news articles x_i 's
- You use all daily stock price up to Jan 1, 2020 as TRAIN and Jan 2, 2020 - April 13, 2020 as TEST
- What's wrong with this procedure?
- train and test data are from different distributions and has sampling bias (of time)

Example 2

 Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

50 indices j that have largest $\frac{\left|\sum_{i=1}^{n} x_{i,j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i,j}^{2}}}$

- After picking our 50 features, we then use CV with the training set to train ridge regression with regularization λ
- What's wrong with this procedure?
- We are underestimating the error as the features have been chosen with the score that depends on the validation set

Recap

- > Learning is...
 - Collect some data
 - > E.g., housing info and sale price
 - Randomly select TEST set and split the remaining dataset into TRAIN, and VAL (multiple splits are needed if doing cross validation)
 - > E.g., 80%, 10%, and 10%, respectively
 - Choose a hypothesis class or model
 - > E.g., linear with non-linear features (also called transformations)
 - Choose a loss function
 - > E.g., least squares with ridge regression penalty on TRAIN
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain estimator, cross-validation on VAL to pick num. features and amount of regularization
 - Justifying the accuracy of the estimate
 - > E.g., report TEST error

Questions?

Questions?

Questions?