Lecture 7:
Regularization




Recap: bias-variance tradeoff

« Consider 40 training examples and 100 test examples

i.i.d.drawn from degree-5 polynomial features

x; ~ Uniform[—1,1], y; ~ £, «(x;)) + €, €; ~ N (0,6%)

Fiur) = b + wix, + wi () + wi(x)® + wi)* + wi(x)’
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This is a linear model with features

h(xi) = (xl-, (xi)z, (xl-)3, (xl-)4, (xl_)S)

f(x) = h(x)'w+b

N

P ) 2
w = arg min —(h (x)+ b
Ls gbeR’WEng} (3= (r(x) + b))



Recap: bias-variance tradeoff

With degree-3 polynomials, we underfit With degree-20 polynomials, we overfit
A \X A \X
Fin @ fi )
0.2 0.2
0.1 1 0.1 4
0.0 0.0 1
-0.1 -0.1
-0.2 -0.2
<4—Optimal predictor 7(x)
-03 -03
—04 ] ] ] L] L] ] L} ] L] -04 L] ] L] ] ] L] ] LJ
-100 -0.75 -0.50 -0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 000 025 050 075 100
X X
current train error = 0.0036791644380554187 0.0005421686349568773
current test error = 0.0037962529988410953 0.14210029429557927



Sensitivity: how to detect overfitting

For a linear model,
y b -+ Wlxl + W2x2 + .- 4+ ded

if | w;|is large then the prediction is sensitive to small changes in x;

Large sensitivity leads to overfitting and poor generalization, and equivalently
models that overfit tend to have large weights

Note that b is a constant and hence there is no sensitivity for the offset b

In Ridge Regression, we use a regularizer ||w||% to measure and control the
sensitivity of the predictor

And optimize for small loss and small sensitivity, by adding a regularizer in the

objective (assume no offset for now) with regularization coefficient A > 0
n

~ . 2
Wridge — al'g mﬂ%n Z (y’b - SB;F’U}) + )‘HwH%
i=1
The regularization encourages solution w with smaller norm ||w||%, hence
encouraging less overfitting.
The first term encourages fitting the training data



Minimizing the Ridge Regression Objective

n
o~ . 2
Wridge — Al mu%nz (yz — ZB?U)) + )\HUJH%
1=1



Shrinkage Properties

n

—~ . 2

Wridge — AI'g mul,nz (yz - CE‘;F”(U) + )\||w||§
1=1

= (X'X+ M)~ X"y

For example, if X' X = nl, then

Similar shrinking effect for general XX, which we do not go
into details in class (come to my OH id interested).

e When A = 0, this gives the least squares model

e This defines a family of models hyper-parametrized by 4

e Large 4 means more regularization and simpler model

e Small A means less regularization and more complex model



n

Ridge regression: minimize Z (wal- — yi)2 + /’t||w||§
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e Left plot: leftmost training error is with no regularization: 0.1093
e Left plot: rightmost training error is variance of the training data: 0.9991
e Right plot: called regularization path



Ridge regression: minimize Z (wal- — yl-)2 + /’t||w||§
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 this gain in test MSE comes from
shrinking w’s to get a less sensitive
predictor
(which in turn reduces the variance)



Bias-variance tradeoff for ridge regression model
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y = Xw* +¢€
T

Wiidge = XTX + D) X'y =

For example, if X’ X = nl, then

A

Wridge =



Bias-variance tradeoff for ridge regression model
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y = Xw*+¢€

nx) = Eyx[Y[X =x] = xTw*

= (X'X + D) X'y = XTX + AD) XTI (Xw* + ¢)
= w¥ — XITX + AD" w* + XTX + 2D XT¢

For example, if X’ X = nl, then

A 1
w* +
n+ A n+ A

r1dge

A

— T
Wridge - X'e

W*_

estimate is shrunk by regularizer error due to noise

— larger A increases bias — larger A decreases variance



Bias-variance tradeoff for ridge regression model

If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y = Xw* +¢
nx) = Eyx[Y[X =x] = xTw
For example, if X’ X = nl, then

A - 1
X w* 4+
n+A n+A

- Irreducible error: Ey [(Y — n(x)?*| X = x] = o°

- Bias squared: (n(x) — [Eg[j?@(x)] )2=

fg(x) = xTw* — xIXTe

/12

C(n+4)?
 Bias decreases with the sample size
- Bias increases with A

(XTW*)Z



Bias-variance tradeoff for ridge regression model
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y = Xw*+¢€

nx) = Eyx[Y[X =x] = xTw*

For example, if X’ X = nl, then

n A 1
— vk — T * 4 TxT
fox) =x"w n+/1xw n+/1x €
- Variance: IEQZ[ (fg(x) — E@[f@(X)] )2] =
2
= B

 Variance decreases with the sample size
« Variance decrease with A



Bias-Variance Properties
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What you need to know...

> Regularization
- Penalizes complex models towards simpler models

> Ridge regression
- L, penalized least-squares regression

- Regularization parameter trades off model
complexity with training error

- Never regularize the offset!



Example: piecewise linear fit

e we fit a linear model:

fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions

h(x) =

l[a]t =
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Example: piecewise linear fit

e we fit a linear model:

fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions

h(x) =

[a]®

£ max{a,0)}

h (X)_
hy(x)
h3(x)
hy(x)

h5(x)_
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the weights capture the change in the slopes



Example: piecewise linear fit

e we fit a linear model:
fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions
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Example: piecewise linear fit (ridge regression)
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We do not observe overfitting, as d=5 and n=100



Can avoid overfitting even w & R0 and n=11 samples
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Questions?



Logistics

- Question from a student: can we get access to the recording from the past offerings of CSE4«
- For FERPA reasons, we are not able to release them.

- We put other public video lectures in the course website that covers a free online textbook

- Office hours are there to help you not just with homework for more generally.

Lecture 8:
Model selection
using Cross-validation




Parameter and hyper-parameter

- Amodel class is set of functions, each function is indexed by its
parameters representing the function

. €.g., a model class Fp = {all degree-p polynomials in R}

each function in that class is represented (or indexed) by parameter
(b, w) € RP*! which can be also written more explicitly as

= {fpo : R=>R[f ,(x) =b+wx+-- +wxP, for some(b,w) € R*P)
- Parameter is what is optimized when training a model
n

e.g., (/5 p) = arg min Z (yl- = (h(xl-)Tw + b) )2
(bw)ER'* =

Fl F2 F3 e

Usually several model classes form
a nested hierarchy of classes with increasing complexities



Parameter and hyper-parameter

- A family of model classes is a set of model classes, each class indexed by
its hyper-parameter representing a model class

. e.g., afamily F = {F,|p € {1,2,...}} is a set of model classes
with hyper-parameter p € {1,2,...}, where F, is a class of degree-p
polynomials

- Hyper-parameter is unsually fixed during training

e.g.,fp = arg min 2 (yi — f(x;) )2

feF

Pi=1
- And we run multiple training for 20035 1
. . - . —&— train error
multiple choices of the hyper-parameter \ e
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Hyper-parameter for ridge regression

« Hyper parameter does not have to represent a model class
- It can represent the algorithm being used also
- hyper-parameter A for ridge regression

. e.g., alinear model class F'; = {f(x) = b + xTw|(b,w) € R
trained by minimizing a regulgrized loss

(b, Wﬂ) =arg min Z (v,— (b +xl.Tw))2 - /1||w||%
(b,w)eR! P

. A is a hyper-parameter, because it is
fixed during training

- And we run multiple training for A
multiple choices of the hyper-parameter ~ EfTor

Test error

Train error

0.005 -
-4 4

log,y(4)




Model selection

- Model selection asks the following question: among all the models we
got for different hyper-parameters, how do we choose the “best” one to
deploy?

- Wrong approach 1:

- Randomly split the dataset into Train Set and Test Set with 80/20 split

 Train models for various hyper-parameters and report the Train Error
and Test Error

. Deploy the model W . achieving minimum Test Error

0.0035 4
o —e— train error

® Report ItS TeSt Error aS 50030 | ."‘,“ o test error
an approximation of ! ’
the True Error

* |ssue:

0.0025 4
Error “"*]
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0.0005

25 slo 75 100 125 150 175 200

p¥ Hyper-parameter p



Why using test error for model selection
gives under estimation of the true error

- Consider a simple experiment where we have two coins
. x; ~ Bern(p) and y; ~ Bern(g) such that

I 1 with probability p - J 1 with probability ¢
* | 0 with probability 1 —p Y=Y 0 with probability 1 — q

. | want to find out min{p, g} given n samples from each
 Using test set to both select the model and report the test error is same as
1 < 1 «
Computing the empirical averages p = — Z x;and § = — Z \
. = o
and reporting the smaller one, i.e., min{p, g}

- We can show that this reported value is strictly smaller than what we
wanted in expectation: E[ min{p, ¢} | < min{p, g}

. For example, if n = 1, then E[min{p, §}] = E[min{x,, y,}] =



To avoid underestimating test error

* Never use the test set for
- training any model, or
* tuning hyper-parameter = model selection

- Test set should only be used once to report test error (as an
approximation of the true error) in the end

 |dea:
- use part of training data (called Validation Set) to estimated the
error and for model selection

« For example:

TRAIN VALIDATION TEST

- Train set: train (multiple) models for different hyper-parameters

- Validation set: compute validation error, to be used in model
selection

- Test set: use it once in the end to report test error for the selected
model



(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example: Notation:
« Y - dataset A\B = A n B¢ denotes setminus

+ D\{j} : train set with j-th data point (x;, y;) moved to validation set

_ Learn model fg\ (;y with D\ {j} dataset: f;,;, = argmin Z v; — f(x;)?

Valiglation Set = {(x;, y)} i€D\{j}
QZ I /

N /S

Train Set = 2\ {/}

I~ _ A 2
. Validation error: error; = (y; — fon (X))

* |t is an unbiased estimate of the error
A 2
errory,e(fon () = [E(x,y)NPx,y[(y —Jo\ ()]

. but, variance of €ITor; is too large. Why?

« Any ideas?



(LOO) Leave-one-out cross validation

* To reduce the variance of the validation error, use instead

- LOO cross validation: Average over all possible single sample validation
set{j} forj e {1,...,n}:

« Train n times:
for each data point you leave out, learn a new classifier f@\ ()

- Validation error is now averaged over all different splits:

1 1 ¢
error; go_cy = — Z error; = " Z Vi —Ja\ j}(xj))z
Jj=1 J=1



LOO cross validation is (almost) unbiased estimate!

- When computing LOO-CV error, we only use n — ldata points to train
« So it’s not an estimate of true error of learning with n data points
true error = Ey [ (Y — fo(X %]

 Usually (slightly) pessimistic — learning with less data typically gives worse
answer.

 Leads to a (slight) over estimation of the error compared to true error

« LOO-CV is almost unbiased! Use LOO-CV error for model selection!!!
e E.g., picking A

0.040 A

CITOT} 0o-Cv

0.035 A
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0.025 A

0.020 A

0.015 A




Computational cost of LOO

- Suppose you have 100,000 data points

* say, you implemented a fast version of your learning algorithm
 Learns in only 1 second

« Computing LOO will take about 1 day

- In general, LOO takes n times longer than training one model

* Any ideas?



Use k-fold cross validation

Randomly divide data into k equal parts
- D,,...,Dy 2= 9 9 Dy Dy Ds

Train Train Validation Train

For each i Jon.
- Learn model fg\ g using data point not in &,

Train

. Estimate error of fg 5 on validation set ;.

1 2
eIrorp, = W Z (yj - f’D\DZ- (%))
‘ (xjayj)epi
k-fold cross validation error is average over data splits:
1 &
error,_s,4 = — ) €ITory,
kfold = 7 Z} P,
k-fold cross validation properties:

» Much faster to compute than LOO-CV as k < n

n
. More (pessimistically) biased — using much less data, only n — ;

« Usually, k =10



Recap

> @Given a dataset, begin by splitting into

TRAIN TEST

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose hyper-parameters such as A

TRAIN-1 VAL-1
TRAIN TRAIN-2 VAL-2 TRAIN-2

> Model assessment: Use TEST to assess the accuracy of the
model you output

= Never train or choose parameters based on the
test data



Example 1

* You wish to predict the stock price of zoom.us given
historical stock price data y;’s (for each i-th day) and

the historical news articles x;’s

* You use all daily stock price up to Jan 1, 2020 as TRAIN
and Jan 2, 2020 - April 13, 2020 as TEST

« What’s wrong with this procedure?


http://zoom.us

Example 2

- Given 10,000-dimensional data and n examples, we pick a
subset of 50 dimensions that have the highest correlation
with labels in the training set:

50 indices j that have largest \/Zn 9

- After picking our 50 features, we then use CV with the
training set to train ridge regression with regularization A

- What’s wrong with this procedure?



Recap

> Learning is...

Collect some data
> E.g., housing info and sale price

Randomly select TEST set and split the remaining dataset into TRAIN,
and VAL (multiple splits are needed if doing cross validation)

> E.g., 80%, 10%, and 10%, respectively
Choose a hypothesis class or model

> E.g., linear with non-linear features (also called transformations)
Choose a loss function

> E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

> E.g., set derivative to zero to obtain estimator, cross-validation
on VAL to pick num. features and amount of regularization

Justifying the accuracy of the estimate
> E.g., report TEST error



Questions?



