
Lecture 5:
Bias-Variance Tradeoff

- explaining test error using theoretical analysis

 



Train/test error vs. complexity

• Model complexity e.g., degree  of the polynomial 
model, number of features used in diabetes example 

• Related to the dimension of the model parameter 
• Train error monotonically decreases with model 

complexity 
• Test error has a U shape
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Statistical learning
• Suppose data is generated from a statistical model 


• and assume we know    (just for now to explain statistical learning)


• Then learning is to find a predictor  that minimizes 


• the expected error 


• think of this random  as a new sample you will encounter when you 
deployed your learned model, and we care about its average performance


• Since, we do not assume anything about the function , it can take any value for 
each , hence the optimization can be broken into sum (or more precisely 
integral) of multiple objective functions, each involving a specific value 


•  

                                 


        Or for discrete ,         

(X, Y ) ∼ PX,Y

PX,Y

η : ℝd → ℝ
$(X,Y )∼PX,Y

[(Y − η(X ))2]
(X, Y )

η(x)
X = x

X = x
$(X,Y )∼PX,Y

[(Y − η(X ))2] = $X∼PX[$Y∼PY|X
[(Y − η(x))2 |X = x] ]

= ∫ $Y∼PY|X
[(Y − η(x))2 |X = x] PX(x) dx

X = ∑
x

PX(x) $Y∼PY|X
[(Y − η(x))2 |X = x]

Where we used the chain rule:  $X,Y[ f (X, Y )] = $X[ $Y|X[ f (x, Y ) |X = x] ]

Typical notation:  
 denotes a random variable 
 denotes a deterministic instance

X
x



Statistical learning
• We can solve the optimization for each  separately 


• 


• The optimal solution is ,  
which is the best prediction in -loss/Mean Squared Error


• Claim: 


• Proof:  


• Note that this optimal statistical estimator  cannot be 
implemented as we do not know  in practice 


• This is only for the purpose of conceptual understanding

X = x
η(x) = arg min

a∈ℝ
$Y∼PY|X

[(Y − a)2 |X = x]

η(x) = $Y∼PY|X
[Y |X = x]

ℓ2
$Y∼PY|X

[Y |X = x] = arg min
a∈ℝ

$Y∼PY|X
[(Y − a)2 |X = x]

η(x) = $[Y |X = x]
PX,Y



Statistical Learning

x

PXY (X = x, Y = y)

x0 x1

PXY (Y = y|X = x0)

PXY (Y = y|X = x1)

Ideally, we want to find:

⌘(x) = EY |X [Y |X = x]

η(x0) = $[Y |X = x0]

y = 0

y = 1

y = 0

y = 0 y = 1

y = 1

η(x1) = $[Y |X = x1]



Statistical Learning

x

y

PXY (X = x, Y = y) Ideally, we want to find:

⌘(x) = EY |X [Y |X = x]

η(x) = $Y|X[Y |X = x]

But we do not know  

We only have samples. 

PX,Y



Statistical Learning

x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

⌘(x) = EY |X [Y |X = x]

⌘(x) = EY |X [Y |X = x]

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

So we need to restrict our 
predictor to a function class (e.g., 
linear, degree-  polynomial) to 
avoid overfitting: 

p

We care about how our predictor performs on future unseen data   
                           True Error of  : ̂f $X,Y[(Y − ̂f(X))2]



Future prediction error  is random  
because  is random (whose randomness comes from training data )

$X,Y[(Y − ̂f(X))2]
̂f (

x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]

��X = x]

Ideal predictor Learned predictor

Notation:  
I use predictor/model/estimate,  
interchangeably

̂f( = arg min
f∈ℱ

1
|( | ∑

(xi,yi)∈(
(yi − f (xi))2

• We are interested in the True Error of a (random) learned predictor:   
                                          

• But the analysis can be done for each  separately, so we analyze  
the conditional true error:  
                                          

• And we care about the average conditional true error, averaged over training data:             
                                  
written compactly as       

$X,Y[(Y − ̂f((X ))2]
X = x

$Y|X[(Y − ̂f((x))2 |X = x]

$([ $Y|X[(Y − ̂f((x))2 |X = x] ]
= $[(Y − ̂f((x))2]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]
Ideal predictor Learned predictor

̂f( = arg min
f∈ℱ

1
|( | ∑

(xi,yi)∈(
(yi − f (xi))2

• Average conditional true error:             
             

                                                    
$(,Y|x[(Y − ̂f((x))2] = $(,Y|x[(Y − η(x) + η(x) − ̂f((x))2]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]
Ideal predictor Learned predictor

̂f( = arg min
f∈ℱ

1
|( | ∑

(xi,yi)∈(
(yi − f (xi))2

• Average conditional true error:             
             

 

(this follows from independence of  and  and  
) 

                   

$(,Y|x[(Y − ̂f((x))2] = $(,Y|x[(Y − η(x) + η(x) − ̂f((x))2]
= $(,Y|x[ (Y − η(x))2 + 2(Y − η(x))(η(x) − ̂f((x)) + (η(x) − ̂f((x))2 ]
= $Y|x[(Y − η(x))2] + 2$(,Y|x[(Y − η(x))

=0

(η(x) − ̂f((x))] + $([(η(x) − ̂f((x))2]

( (X, Y )
$Y|x[Y − η(x)] = $[Y |X = x] − η(x) = 0

= $Y|x[(Y − η(x))2] + $([(η(x) − ̂f((x))2]

Irreducible error 
(a) Caused by stochastic  

label noise in  
(b) cannot be reduced

PY|X=x

Average learning error 
Caused by  

(a) either using too “simple” of a model or  
(b) not enough data to learn the model accurately



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f( = arg min

f∈ℱ

1
|( | ∑

(xi,yi)∈(
(yi − f (xi))2

• Average learning error:             
 $([(η(x) − ̂f((x))2] = $([ ( η(x) − $([ ̂f((x)] + $([ ̂f((x)] − ̂f((x) )2 ]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f( = arg min

f∈ℱ

1
|( | ∑

(xi,yi)∈(
(yi − f (xi))2

• Average learning error:             
 

 

                  

 

$([(η(x) − ̂f((x))2] = $([ ( η(x) − $([ ̂f((x)] + $([ ̂f((x)] − ̂f((x) )2 ]
= $([ ( η(x) − $([ ̂f((x)])2 + 2(η(x) − $([ ̂f((x)])($([ ̂f((x)] − ̂f((x))

+($([ ̂f((x)] − ̂f((x))2 ]
= ( η(x) − $([ ̂f((x)])2 + $([ ($([ ̂f((x)] − ̂f((x))2 ]

biased squared variance



Bias-variance tradeoff

biased squared variance

irreducible error

+ ( η(x) − $([ ̂f((x)])2 + $([ ($([ ̂f((x)] − ̂f((x))2 ]

$(,Y|x[(Y − ̂f((x))2] = $Y|x[ (Y − η(x))2 ]
• Average conditional true error:            

• Bias squared:  
measures how the  
predictor is mismatched with 
the best predictor in 
expectation 

• variance:  
measures how the predictor  
varies each time with a new  
training datasets



Questions?


