Lecture 5: Bias-Variance Tradeoff

- explaining test error using theoretical analysis

Train/test error vs. complexity

- Model complexity e.g., degree p of the polynomial model, number of features used in diabetes example
 - Related to the dimension of the model parameter
- Train error monotonically decreases with model complexity
- Test error has a U shape

Statistical learning

Typical notation: X denotes a random variable x denotes a deterministic instance

- Suppose data is generated from a statistical model $(X, Y) \sim P_{X,Y}$
- and assume we know $P_{X,Y}$ (just for now to explain statistical learning)
- Then **learning** is to find a predictor $\eta: \mathbb{R}^d \to \mathbb{R}$ that minimizes
- the expected error $\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2]$
 - think of this random (X, Y) as a new sample you will encounter when you deployed your learned model, and we care about its average performance
- Since, we do not assume anything about the function $\eta(x)$, it can take any value for each X = x, hence the optimization can be broken into sum (or more precisely integral) of multiple objective functions, each involving a specific value X=x
- $\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2] = \mathbb{E}_{X\sim P_X}[\mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(X))^2 | X=x]]$ $= \int \mathbb{E}_{Y \sim P_{Y|X}} [(Y - \eta(x))^2 | X = x] P_X(x) dx$ $= \sum P_X(x) \mathbb{E}_{Y \sim P_{Y|X}} [(Y - \eta(x))^2 | X = x]$ $= \sum_{X \in Y} P_X(x) \mathbb{E}_{Y \sim P_{Y|X}} [(Y - \eta(x))^2 | X = x]$ $= \sum_{X \in Y} P_X(x) \mathbb{E}_{Y \sim P_{Y|X}} [(Y - \eta(x))^2 | X = x]$ Or for discrete X,

Where we used the chain rule: $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \Big[\mathbb{E}_{Y|X}[f(x,Y) | X = x] \Big]$

Statistical learning

- We can solve the optimization for each X=x separately
 - $\bullet \quad \eta(x) = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}} [(Y a)^2 | X = x]$
- The optimal solution is $\eta(x) = \mathbb{E}_{Y \sim P_{Y|X}}[Y | X = x]$, which is the best prediction in ℓ_2 -loss/Mean Squared Error
- Claim: $\mathbb{E}_{Y \sim P_{Y|X}}[Y|X=x] = \arg\min_{a \in \mathbb{D}} \mathbb{E}_{Y \sim P_{Y|X}}[(Y-a)^2|X=x]$
- Proof: $\frac{\partial}{\partial a} \mathbb{E}[Y = X^2 | X = X] = \frac{\partial}{\partial a} \{\mathbb{E}[Y = X] + \mathbb{E}[Y | X = X] = \mathcal{E}[Y | X = X$
- Note that this optimal statistical estimator $\eta(x) = \mathbb{E}[Y | X = x]$ cannot be implemented as we do not know $P_{X,Y}$ in practice
- This is only for the purpose of conceptual understanding

Statistical Learning

Ideally, we want to find:

Openul Architer $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$

v = 0

Statistical Learning

Statistical Learning

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for i = 1, ..., n

So we need to restrict our predictor to a function class (e.g., linear, degree-p polynomial) to avoid overfitting:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\text{T(x)} = \mathbb{E}_{Y|X}[Y|X = x]$$

We care about how our predictor performs on future unseen data True Error of \hat{f} : $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$

Future prediction error $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$ is random because \hat{f} is random (whose randomness comes from training data \mathscr{D})

$$P_{XY}(X=x,Y=y)$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

Notation:

I use predictor/model/estimate, interchangeably

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

- We are interested in the **True Error** of a (random) learned predictor: $\mathbb{E}_{YY}[(Y-\hat{f}_{\varnothing}(X))^2]$
- But the analysis can be done for each X = x separately, so we analyze the conditional true error:

$$\mathbb{E}_{Y|X}[(Y - \hat{f}_{\mathcal{D}}(x))^2 | \underline{X = x}]$$

• And we care about the average conditional true error, averaged over training data: $\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{Y|X}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}|(X=x)]\right]$ written compactly as $=\mathbb{E}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}]$ and $\mathbb{E}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}]$ and $\mathbb{E}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}]$ and $\mathbb{E}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}]$ and $\mathbb{E}[(Y-\hat{f}_{\mathscr{D}}(x))^{2}]$

written compactly as
$$= \mathbb{E}[(Y - \hat{f}_{\varnothing}(x))^{2}]$$

$$\mathbb{E}_{Y|X}[\mathbb{E}_{\mathcal{D}}[(Y-\widehat{f}_{\mathcal{D}}(x))^2]|X=x] = \mathbb{E}_{Y|X}[\mathbb{E}_{\mathcal{D}}[(Y-\eta(x)+\eta(x)-\widehat{f}_{\mathcal{D}}(x))^2]|X=x]$$

Ideal predictor

Learned predictor

$$\mathbb{E}_{Y|X}[Y|X=x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}\left[(Y - Y(x))^{2} + 2(Y - Y(x))(Y(x)) - \hat{f}_{0}(x) + (Y(x)) - \hat{f}_{0}(x)^{2} \right]$$

$$=\mathbb{E}_{Y|X}[(Y-\eta(x))]^{2}+2\cdot\mathbb{E}[(Y-\eta(x))(\eta(x)-f_{0}(x))]$$

$$-\nu\mathbb{E}[(Y-\eta(x))]\cdot\mathbb{E}[(\eta(x)-f_{0}(x))]$$

$$\rightarrow \mathbb{E}\left[\mathcal{E}[X=x]-\gamma(x)\right]$$

$$= \mathbb{E}_{\mathcal{C}(x)} \left[\left(\frac{1}{1 - \mathcal{C}(x)} \right)^2 \right] + \mathbb{E} \left[\left(\frac{1}{1 - \mathcal{C}(x)} - \frac{1}{1 - \mathcal{C}(x)} \right)^2 \right]$$

Irreducible error Expected Learning Grow.

Ideal predictor

$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\begin{split} &\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^2] \\ &= \mathbb{E}_{\mathcal{D},Y|x}\Big[(Y-\eta(x))^2+2(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))+(\eta(x)-\hat{f}_{\mathcal{D}}(x))^2\Big] \\ &= \mathbb{E}_{Y|x}[(Y-\eta(x))^2]+2\mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))]+\mathbb{E}_{\mathcal{D}}[(\eta(x)-\hat{f}_{\mathcal{D}}(x))^2] \end{split}$$

(this follows from independence of \mathscr{D} and (X, Y) and $\mathbb{E}_{xx} [Y - n(x)] = \mathbb{E}[Y | X = x] - n(x) = 0$)

$$\mathbb{E}_{Y|x}[Y - \eta(x)] = \mathbb{E}[Y|X = x] - \eta(x) = 0$$

 $= \mathbb{E}_{Y|x}[(Y - \eta(x))^2]$

(a) Caused by stochastic label noise in $P_{Y|X=x}$

(b) cannot be reduced

+
$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2]$$

Average learning error Caused by

(a) either using too "simple" of a model or

(b) not enough data to learn the model accurately

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

• Average learning error:
$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}[(\eta(x) - \tilde{f}(x))^{2}] + 2 \mathbb{E}[(\eta(x) - \tilde{f}(x))(\tilde{f}(x) - \tilde{f}_{\mathcal{D}}(x))] + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))^{2}]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= 0$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} + \mathbb{E}[(\tilde{f}_{\mathcal{D}}(x) - \tilde{f}_{\mathcal{D}}(x))]$$

$$= (\eta(x) - \tilde{f}_{\mathcal{D}}(x))^{2} +$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average learning error:

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))$$

$$+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] \right)^{2} + \mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x) \right)^{2} \right]$$

biased squared

variance

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{Y|x}\Big[(Y-\eta(x))^{2}\Big]$$
 irreducible error
$$+ \frac{\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}{\text{biased squared}} + \mathbb{E}_{\mathcal{D}}\Big[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^{2}\Big]$$
 variance

Bias squared:

measures how the predictor is mismatched with the best predictor in expectation

variance:

measures how the predictor varies each time with a new training datasets

Questions?