Lecture 5:
Bias-Variance Tradeoff

- explaining test error using theoretical analysis
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« Model complexity e.g., degree p of the polynomial y°x|
model, number of features used in diabetes example °*]
» Related to the dimension of the model parameter °“
 Train error monotonically decreases with model
complexity
» Test error has a U shape
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Typical notation:
X denotes a random variable
X denotes a deterministic instance

Statistical learning

Suppose data is generated from a statistical model (X, Y) ~ Py y
e and assume we know PX,Y (just for now to explain statistical learning)

Then learning is to find a predictor 7 : R - R that minimizes

o the expected error [E(X,Y)~PX Y[(Y —nX )?]

e think of this random (X, Y') as a new sample you will encounter when you
deployed your learned model, and we care about its average performance

Since, we do not assume anything about the function 7(x), it can take any value for
each X = x, hence the optimization can be broken into sum (or more precisely
integral) of multiple objective functions, each involving a specific value X = x

o Expr, [(Y =001 = Exop [Eyop, J(¥ = n(x))*| X = x1]

= JEYNPYIX[(Y_ l7()€))2|X = x] Px(x) d;.d(, e

Or for discrete X, = Z Py(x) Ey. Pm[(Y — n(x))2 | X = x] ngﬂe”( ge'f“”’d/
X \w )

Where we used the chain rule: Ey [ f(X, Y)] = [EX[ Eyx[fx, Y) [ X = x] ]



Statistical learning

(USlauce,
We can solve the optimization for each X = x separately

. 700 = argminEyp [(¥—a)|X =]
ae

The optimal solution is 77(x) = [EY~PY|X[Y|X = x|,
which is the best prediction in £,-loss/Mean Squared Error

Claim: Ey..p, [Y|X = x]
Proof: é% EL G 1X =] { ELY? X ] R BLY | Xox]a + }
= Elxed +2a | oy =°
EOY Xoo] = 709D

argmln[EYNP LY — a)*| X = x]

Note that this optimal statistical estimator n(x) = E[Y | X = x] cannot be
implemented as we do not know Py y in practice

This is only for the purpose of conceptual understanding



Statistical Learning

y=0

Ideally, we want to find:

O] Pl 1)(2) = By x [V |X = ]

xX=0

ny(Y — y‘X — CL‘Q)

5 -
n(xp) = E[Y | X = xo]

Ik Pxy (Y =y|X = z1)

7
“,
..........................................................

n(x) =E[Y|X = x]



Statistical Learning

PuviX =¥V =g Ideally, we want to find:
n(z) = By x[Y[X = z

@ut we do not know Py y

We only have samples.

@ n(x) = Ey|x[Y|X = x]




Statistical Learning

Pus( X =3V =g Ideally, we want to find:
n(z) = By x[Y|X = z]

But we only have samples:

(xi,yz)”d Py feri=1,...m

So we need to restrict our
predictor to a function class (e.g.,

linear, degree-p polynomial) to
avoid overfitting:

7 mn

= 1

{ I8 59w - et
g - T > (@ — f(=))
T Sepbdsss

79> Ey x[Y]X = ]
We care about how our predictor performs on future unseen data
True Error of f Ex (Y — f(X )?]



Future prediction error [y ,[(Y —f(X))Z] is random
because f is random (whose randomness comes from training data &)

Pxy (X =z,Y =y)

X

Each draw D = {(x;,y;) }_; results in different f



Notation:
| use predictor/model/estimate,

Bias-variance tradeoff interchangeably
Ideal predictor Learned predictor
M) = EY X YIX =2z £ : 1 2
() x[Y] | o = argmin —— (xl,y,z)‘;@ (3 = F)

» We are interested in the True Error of a (random) learned predictor: é) 5
[EX,Y[(Y _ fgz(X))z]
 But the analysis can be done for each X = x separately, so we analyze
the conditional true error:

Y|X[<Y — fo(x))? |X = x]

* And we care about th ----- age conditional t ror averaged over training data:
(Y — f.@(X))2 |
written compactly as —\[E[g f@(x)) k R fprrts / 3 Sourg of- .

.z uw(w&u,d thg ewver, we Ao oo 0o fosse ?é uto
EY|X[ED[(Y fD ’X = x EY|X[ED[(Y —77( ) ( ) fD ’X _ ZE



Bias-variance tradeoff

Ideal predictor Learned predictor

D i f))?

(xi’yi)e9

fQZ = arg min
reF | D|

Eg yxl(Y = fo(0))?] = Eg vy l(Y — 1(x) + n(x) — fgz(x))z]
2
= E[{T-qm} +2 CY 70x)(700) - J/Z\ ) + (7cx) 7/ Jot) :?
+ & (7(9&)~_7600‘27




Bias-variance tradeoff

Ideal predictor Learned predictor
p— p— A . 1
n(z) =Ey x|[Y|X = 1] _ = arg min Y Oi-f)?
fez || e D

* Average conditionaIA true error: A
Egyu[(Y = fo(0))*] = Eg y [(Y = n(x) + n(x) — fg(x))’]

- [Eg,m[ (Y = 7(x))? + 2(Y = n())(1(x) = f(x)) + ((x) —fgz(x))zl
= Ey,[(Y = n(0))*] + 2Eg y,[(Y = n())(1(x) — fo D] + Eg[(7(x) — fo(x))*]

=0
(this follows from independence of & and (X, Y) and
EyulY — n(0] = E[Y|X = x] — n(x) = 0)

= Egl(Y=n0P1  +  Egl0®) - f5(0)’]

Irreducible error Average learning error

(a) Caused by stochastic Caused by
label noise in pY|X (a) either using too “simple” of a model or
=X

(b) cannot be reduced (b) not enough data to learn the model accurately




Bias-variance tradeoff

Ideal predictor Learned predictor
— - A 1
77(517) = IE‘:Y|X[YV‘AX - 37] fo = argmin Z (y; — f(x)?
feF |9 | e

. T
« Average learning error: 7

A ~ 7 . . )

Eol(n(x) = fo))H] = Eg| (n(x) = Eglfo()] + Eglfo()] — fo(x) )]
= Pg[(mw)— Jc»o)l] 2 H’Z[ (7 —Fen) C fex
—V 2 (em-gt0 ( f0- Eﬁ_ﬁa@"’]}

= (70— ‘][[/%) )1 ~+ (JT@CJ” ,729(/960> 1
B of fBY =




Bias-variance tradeoff

Ideal predictor Learned predictor
— - A 1
77(56) - IE‘:Y|X[YV‘AX ~ CE] fo = argmin Z (y; — f(x)?
feF |9 | e

« Average learning error:

Eol(n) =[5 ()] = Eg[ (1) = Eglfo(] + Eglfo(] = f5() )]
= Eg| (100 = Eglfo@D? + 201 = Egl o@D (Eg /5001 — fo(0)

+(Eglfo0)] - fo0)”

— (ﬂ(x) _ [Eg[f@(x)])z + [Eg ([E@[f@(x)] _]?QZ(X))ZI

biased squared variance




Bias-variance tradeoff

« Average conditional true error:
Egyil (Y = fo@)] = Ey, [ (Y = n(0))’]
irreducible error
+ (10 = Eolfo))’ + Eo| (Eglfo] - fo)’|

biased squared variance

06 —— bias?

Bias squared: N
measures how the . B
predictor is mismatched with
the best predictor in
expectation

variance:

measures how the predictor
varies each time with a new
training datasets
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Questions?



