- HW0 due Tuesday midnight
- Extra office hours
 - Monday:
 - o Tim Li, 10:30 11:30
 - Sewoong Oh, 12:30 1:30
 - Hugh Sun, 14:30 15:30
 - Tuesday:
 - Josh Gardner, 9:00 10:00
 - Hugh Sun, 14:30 15:30
 - Jakub Filipek, 16:00 17:00
 - Pemi Nguyen, 17:00 20:00

Lecture 4: Polynomial regression

- How to fit more complex data?

Recap: Linear Regression

• In general high-dimensions, we fit a linear model with intercept $y_i \simeq w^T x_i + b$, or equivalently $y_i = w^T x_i + b + \epsilon_i$ with model parameters $(w \in \mathbb{R}^d, b \in \mathbb{R})$ that minimizes ℓ_2 -loss

$$\mathcal{L}(w,b) = \sum_{i=1}^{n} (y_i - (w^T x_i + b))^2$$
error ϵ_i

Recap: Linear Regression

• The least squares solution, i.e. the minimizer of the ℓ_2 -loss can be written in a **closed form** as a function of data ${\bf X}$ and ${\bf y}$ as

As we derived in class:

$$\mu = \frac{1}{n} \mathbf{X}^T \mathbf{1}$$

$$\widetilde{\mathbf{X}} = \mathbf{X} - \mathbf{1} \mu^T$$

$$\widehat{w}_{LS} = (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y}$$

$$\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i - \mu^T \widehat{w}_{LS}$$

or equivalently using straightforward linear algebra by setting the gradient to zero:

$$\begin{bmatrix} \widehat{w}_{LS} \\ \widehat{b}_{LS} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{X}^T \\ \mathbf{1}^T \end{bmatrix} [\mathbf{X} \quad \mathbf{1}] \end{pmatrix}^{-1} \begin{bmatrix} \mathbf{X}^T \\ \mathbf{1}^T \end{bmatrix} \mathbf{y}$$

Quadratic regression in 1-dimension

• Data:
$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Linear model with parameter (b, w_1) :
 - $y_i = b + w_1 x_i + \epsilon_i$
 - $\mathbf{y} = \mathbf{1}b + \mathbf{X}w_1 + \epsilon$
- Quadratic model with parameter $(b, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix})$:
 - $y_i = b + w_1 x_i + w_2 x_i^2 + \epsilon_i$
 - Define $h: \mathbb{R} \to \mathbb{R}^2$ such that $x \mapsto h(x) = \left| \begin{array}{c} x \\ x^2 \end{array} \right|$
 - $y_i = b + h(x_i)^T w + \epsilon_i$

Treat h(x) as new input features. Let $\mathbf{H} = \begin{bmatrix} h(x_1)^T \\ \vdots \\ h(x_n)^T \end{bmatrix}$. Replace x_i by $\begin{bmatrix} x_i \\ x_i^2 \end{bmatrix}$

•
$$\mathbf{y} = \mathbf{1}b + \mathbf{H}w + \epsilon$$

Degree-p polynomial regression in 1-dimension

Data:
$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Linear model with parameter (b, w_1) :
 - $y_i = b + w_1 x_i + \epsilon_i$
 - $\mathbf{y} = \mathbf{1}b + \mathbf{X}w_1 + \epsilon$
- Degree-p model with parameter $(b, w \in \mathbb{R}^p)$:
 - $y_i = b + w_1 x_i + \dots + w_p x_i^p + \epsilon_i$
 - Define $h: \mathbb{R} \to \mathbb{R}^p$ such that $x \mapsto h(x) = \begin{bmatrix} x \\ \vdots \\ x^p \end{bmatrix}$
 - $y_i = b + h(x_i)^T w + \epsilon_i$

Treat h(x) as new input features and let $\mathbf{H} = \begin{bmatrix} h(x_1)^T \\ \vdots \\ h(x_n)^T \end{bmatrix}$

•
$$\mathbf{y} = \mathbf{1}b + \mathbf{H}w + \epsilon$$

Degree-p polynomial regression in d-dimension

Data:
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ & x_2^T & & \\ & \vdots & & \\ & x_n^T & & \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Degree-p model with parameter $(b, w \in \mathbb{R}^{dp})$:

$$y_i = b + x_i^T w_1 + \dots + (x_i^p)^T w_p + \epsilon_i \text{, where } x_i^P = \begin{bmatrix} x_{i1}^P \\ \vdots \\ x_{id}^P \end{bmatrix}$$

- Define $h: \mathbb{R}^d \to \mathbb{R}^{dp}$ such that $x \mapsto h(x) = \begin{bmatrix} x \\ \vdots \\ x^p \end{bmatrix} \in \mathbb{R}^{dp}$
- $y_i = b + h(x_i)^T w + \epsilon_i$

Treat
$$h(x)$$
 as new input features and let $\mathbf{H} = \begin{bmatrix} h(x_1)^T \\ \vdots \\ h(x_n)^T \end{bmatrix}$

- $\mathbf{y} = \mathbf{1}b + \mathbf{H}w + \epsilon$
- In general, any feature h(x) can be used, e.g., $\sin(ax+b)$, $e^{-b(x-a)^2}$, $\log x$, etc.

Which p should we choose?

 First instance of class of models with different representation power = model complexity

How do we determine which is better model?

Generalization

- we say a predictor generalizes if it performs as well on unseen data as on training data
- formal mathematical definition involves probabilistic assumptions (coming later in this week)
- the data used to train a predictor is training data or in-sample data
- we want the predictor to work on out-of-sample data
- we say a predictor fails to generalize if it performs well on insample data but does not perform well on out-of-sample data

- train a cubic predictor on 32 (in-sample) white circles: Mean Squared Error (MSE) 174
- predict label y for 30 (out-of-sample) blue circles: MSE 192
- ullet conclude this predictor/model generalizes, as in-sample MSE \simeq out-of-sample MSE

Split the data into training and testing

- a way to mimic how the predictor performs on unseen data
- given a single dataset $S = \{(x_i, y_i)\}_{i=1}^n$
- we split the dataset into two: training set and test set
- selection of data train/test should be done randomly (80/20 or 90/10 are common)
- training set used to train the model

• minimize
$$\mathcal{L}_{\text{train}}(w) = \frac{1}{|S_{\text{train}}|} \sum_{i \in S_{\text{train}}} (y_i - x_i^T w)^2$$

test set used to evaluate the model

$$\mathscr{L}_{\text{test}}(w) = \frac{1}{|S_{\text{test}}|} \sum_{i \in S_{\text{test}}} (y_i - x_i^T w)^2$$

- this assumes that test set is similar to unseen data
- test set should never be used in training

We say a model w or predictor **overfits** if $\mathcal{L}_{\text{train}}(w) \ll \mathcal{L}_{\text{test}}(w)$

small training error large training error generalizes well possible, but unlikely small test error performs well generalizes well fails to generalize large test error performs poorly **Overfitting**

How do we choose which model to use?

- 1. first use 60 data points to train and 60 data points to test and train several models to get the above graph on the right
- 2. then choose degree p = 5, since it achieves **minimum test error**
- 3. now re-train on all 120 data points with degree 5 polynomial model demo2 lin.ipynb

Another example: Diabetes

- Example: Diabetes
 - 10 explanatory variables
 - from 442 patients
 - we use half for train and half for validation

Features	Train MSE	Test MSE
All	2640	3224
S5 and BMI	3004	3453
S 5	3869	4227
ВМІ	3540	4277
S4 and S3	4251	5302
S 4	4278	5409
S 3	4607	5419
None	5524	6352

- test MSE is the primary criteria for model selection
- Using only 2 features (S5 and BMI), one can get very close to the prediction performance of using all features
- Combining S3 and S4 does not give any performance gain

demo3_diabetes.ipynb

What does the bias-variance theory tell us?

- **Train error** (random variable, randomness from \mathscr{D})
 - Use $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n \sim P_{X,Y}$ to find \widehat{w}

Train error:
$$\mathcal{L}_{\text{train}}(\widehat{w}_{\text{LS}}) = \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{w}^T x_i)^2$$

- recall the test error is an unbiased estimator of the true error
- True error (random variable, randomness from 2)

• True error:
$$\mathcal{L}_{\text{true}}(\widehat{w}) = \mathbb{E}_{(x,y) \sim P_{X,Y}}[(y - \widehat{w}^T x)^2]$$

- **Test error** (random variable, randomness from \mathscr{D} and \mathscr{T})
 - Use $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^m \sim P_{X,Y}$

Test error:
$$\mathcal{L}_{\text{test}}(\widehat{w}) = \frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{w}^T x_i)^2$$

 theory explains true error, and hence expected behavior of the (random) test error

What does the bias-variance theory tell us?

- Train error is optimistically biased (i.e. smaller) because the trained model is minimizing the train error
- Test error is unbiased estimate of the true error, if test data is never used in training a model or selecting the model complexity
- Each line is an i.i.d. instance of ${\mathscr D}$ and ${\mathscr T}$

Questions?

Lecture 5: Bias-Variance Tradeoff

- explaining test error using theoretical analysis

Train/test error vs. complexity

- Related to the dimension of the model parameter
- Train error monotonically decreases with model complexity
- Test error has a U shape

-0.75 -0.50 -0.25 0.00 X 0.25

0.50

degree 3

0.10

-0.15

-0.20

Statistical learning

Typical notation: X denotes a random variable x denotes a deterministic instance

- Suppose data is generated from a statistical model $(X,Y) \sim P_{X,Y}$
 - ullet and assume we know $P_{X,Y}$ (just for now to explain statistical learning)
- Then **learning** is to find a predictor $\eta: \mathbb{R}^d \to \mathbb{R}$ that minimizes
 - the expected error $\mathbb{E}_{(X,Y)\sim P_{Y,Y}}[(Y-\eta(X))^2]$
 - think of this random (X, Y) as a new sample you will encounter when you deployed your learned model, and we care about its average performance
- Since, we do not assume anything about the function $\eta(x)$, it can take any value for each X=x, hence the optimization can be broken into sum (or more precisely integral) of multiple objective functions, each involving a specific value X=x

$$\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2] = \mathbb{E}_{X\sim P_X}\big[\mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2\,|\,X=x]\,\big]$$

$$= \int \mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2\,|\,X=x]\,P_X(x)\,dx$$
 Or for discrete X ,
$$= \sum_x P_X(x)\,\mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2\,|\,X=x]$$

Where we used the chain rule: $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \Big[\mathbb{E}_{Y|X}[f(x,Y) \,|\, X=x] \Big]$

Statistical learning

- We can solve the optimization for each X = x separately
 - $\bullet \quad \eta(x) = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}} [(Y a)^2 | X = x]$
- The optimal solution is $\eta(x)=\mathbb{E}_{Y\sim P_{Y|X}}[Y|X=x],$ which is the best prediction in \mathcal{E}_2 -loss/Mean Squared Error
- Claim: $\mathbb{E}_{Y \sim P_{Y|X}}[Y|X=x] = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}}[(Y-a)^2|X=x]$
- Proof:

- Note that this optimal statistical estimator $\eta(x)=\mathbb{E}[Y|X=x]$ cannot be implemented as we do not know $P_{X,Y}$ in practice
- This is only for the purpose of conceptual understanding

Statistical Learning

$$P_{XY}(X=x,Y=y)$$
 $y=1$
 $y=0$
 x
 x

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$P_{XY}(Y=y|X=x_0)$$

Statistical Learning

$$P_{XY}(X=x,Y=y)$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we do not know $P_{X,Y}$ We only have samples.

$$\eta(x) = \dot{\mathbb{E}}_{Y|X}[Y|X = x]$$

Statistical Learning

$$P_{XY}(X=x,Y=y)$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for i = 1, ..., n

So we need to restrict our predictor to a function class (e.g., linear, degree-p polynomial) to avoid overfitting:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

 $\mathbb{E}_{Y|X}[Y|X=x]$

We care about how our predictor performs on future unseen data True Error of \hat{f} : $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$

Future prediction error $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$ is random because \hat{f} is random (whose randomness comes from training data \mathcal{D})

$$P_{XY}(X=x,Y=y)$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

Notation:

I use predictor/model/estimate, interchangeably

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

We are interested in the True Error of a (random) learned predictor:

$$\mathbb{E}_{X,Y}[(Y-\hat{f}_{\mathcal{D}}(X))^2]$$

• But the analysis can be done for each X = x separately, so we analyze the **conditional true error**:

$$\mathbb{E}_{Y|X}[(Y - \hat{f}_{\mathcal{D}}(x))^2 | X = x]$$

• And we care about the average conditional true error, averaged over training data:

$$\mathbb{E}_{\mathcal{D}} \Big[\, \mathbb{E}_{Y|X} [(Y - \hat{f}_{\mathcal{D}}(x))^2 \, | \, X = x] \, \Big]$$
 written compactly as
$$= \mathbb{E} [(Y - \hat{f}_{\mathcal{D}}(x))^2]$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^2]$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D},Y|x}\Big[(Y-\eta(x))^{2}+2(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))+(\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}\Big]$$

$$= \mathbb{E}_{Y|x}[(Y-\eta(x))^{2}]+2\mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))]+\mathbb{E}_{\mathcal{D}}[(\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= 0$$

(this follows from independence of \mathscr{D} and (X, Y) and

$$\mathbb{E}_{Y|x}[Y - \eta(x)] = \mathbb{E}[Y | X = x] - \eta(x) = 0)$$

$$= \mathbb{E}_{Y|x}[(Y - \eta(x))^2]$$

$+ \qquad \mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2]$

Irreducible error

(a) Caused by stochastic label noise in $P_{Y\mid X=x}$ (b) cannot be reduced

Average learning error

Caused by

(a) either using too "simple" of a model or(b) not enough data to learn the model accurately

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average learning error:

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^{2}\right]$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average learning error:

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))$$

$$+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] \right)^2 + \mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x) \right)^2 \right]$$

biased squared

variance

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{Y|x}\Big[(Y-\eta(x))^2\Big]$$
 irreducible error
$$+ \frac{\big(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\big)^2}{\text{biased squared}} + \mathbb{E}_{\mathcal{D}}\Big[\big(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\big)^2\Big]$$
 variance

Bias squared:

measures how the predictor is mismatched with the best predictor in expectation

variance:

measures how the predictor varies each time with a new training datasets

Questions?

Lecture 6: Bias-Variance Tradeoff (continued)

Test error vs. model complexity

Optimal predictor $\eta(x)$ is degree-5 polynomial

Error

degree p of the polynomial regression

Simple model: Model complexity is below the complexity of $\eta(x)$

0.00 0.25 0.50

-0.10

-0.15

-1.00 -0.75 -0.50 -0.25

Complex model:

demo4_tradeoff.ipynb

Recap: Bias-variance tradeoff with simple model

- When model **complexity is low** (lower than the optimal predictor $\eta(x)$)
 - Bias 2 of our predictor, $\left(\eta(x) \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2$, is large
 - Variance of our predictor, $\mathbb{E}_{\mathscr{D}} \left[\left(\mathbb{E}_{\mathscr{D}} [\hat{f}_{\mathscr{D}}(x)] \hat{f}_{\mathscr{D}}(x) \right)^2 \right]$, is small
 - · If we have more samples, then
 - Bias
 - Variance
 - Because Variance is already small, overall test error

Recap: Bias-variance tradeoff with simple model

- When model complexity is high (higher than the optimal predictor $\eta(x)$)
 - Bias of our predictor, $\left(\eta(x) \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2$, is small
 - Variance of our predictor, $\mathbb{E}_{\mathscr{D}} \left[\left(\mathbb{E}_{\mathscr{D}} [\hat{f}_{\mathscr{D}}(x)] \hat{f}_{\mathscr{D}}(x) \right)^2 \right]$, is large
 - · If we have more samples, then
 - Bias
 - Variance
 - Because Variance is dominating, overall test error

- let us first fix sample size N=30, collect one dataset of size N i.i.d. from a distribution, and fix one training set S_{train} and test set S_{test} via 80/20 split
- then we run multiple validations and plot the computed MSEs for all values of p
 that we are interested in

 $p_{N=24}^* \simeq 24-1$ Model complexity (= degree of the polynomial)

- Given sample size N there is a threshold, p_N^* , where training error is zero
- Training error is always monotonically non-increasing
- Test error has a trend of going down and then up, but fluctuates

 let us now repeat the process changing the sample size to N=40, and see how the curves change

- The threshold, p_N^* , moves right
- Training error tends to increase, because more points need to fit
- Test error tends to decrease, because Variance decreases

- let us now fix predictor model complexity p=30, collect multiple datasets by starting with 3 samples and adding one sample at a time to the training set, but keeping a large enough test set fixed
- then we plot the computed MSEs for all values of train sample size
 Ntrain that we are interested in

- There is a threshold, N_p^* , below which training error is zero (extreme overfit)
- Below this threshold, test error is meaningless, as we are overfitting and there are multiple predictors with zero training error some of which have very large test error
- Test error tends to decrease
 - Training error tends to increase

lecture2_polynomialfit.ipynb

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\mathbf{y} = \mathbf{X}w^* + \epsilon$$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} =$$

$$=$$

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x] =$$

$$\widehat{f}_{\emptyset}(x) = x^T \widehat{w}_{\text{MLE}} =$$

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\mathbf{y} = \mathbf{X} w^* + \epsilon$$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} w^* + \epsilon)$$

$$= w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = \mathbb{E}_{Y|X} [Y|X = x] = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T \widehat{w}_{\text{MLE}} = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

- Irreducible error: $\mathbb{E}_{X,Y}[(Y \eta(x))^2 | X = x] =$
- Bias squared: $\left(\eta(x) \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^2 =$ (is independent of the sample size!)

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{\text{MLE}} = w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

• Variance: $\mathbb{E}_{\mathscr{D}}\left[\left(\hat{f}_{\mathscr{D}}(x) - \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2\right] =$

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{\text{MLE}} = w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

• Variance:
$$\mathbb{E}_{\mathcal{D}} \left[\left(\hat{f}_{\mathcal{D}}(x) - \mathbb{E}_{\mathcal{D}} [\hat{f}_{\mathcal{D}}(x)] \right)^{2} \right] = \mathbb{E}_{\mathcal{D}} [x^{T} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \epsilon \epsilon^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} x]$$

$$= \sigma^{2} \mathbb{E}_{\mathcal{D}} [x^{T} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} x]$$

$$= \sigma^{2} x^{T} \mathbb{E}_{\mathcal{D}} [(\mathbf{X}^{T} \mathbf{X})^{-1}] x$$

- To analyze this, let's assume that $X_i \sim \mathcal{N}(0,\mathbf{I})$ and number of samples, n, is large enough such that $\mathbf{X}^T\mathbf{X} = n\mathbf{I}$ with high probability and $\mathbb{E}[(\mathbf{X}^T\mathbf{X})^{-1}] \simeq \frac{1}{n}\mathbf{I}$, then
 - Variance is $\frac{\sigma^2 x^T x}{n}$, and decreases with increasing sample size n

Questions?