Lecture 3: Linear regression
(continued)

W



The regression problem in matrix notation

Linear model: Yy; = ZU;-TIU + €;

Least squares solution:

s = argmin [y — Xuw|[3

= (X'X)' X"y

What about an offset
(a.k.a intercept)?




The regression problem in matrix notation

Linear model: Yy; = a:?w + €;

Least squares solution:

s = argmin [y — Xuw|[3

= (X'X)' X"y

Affine model:  y; =z} w + b + ¢

Least squares solution:

n

o~ . 2
wrs,brs = arg min (yi — (z] w+b))
w7
i—1

= argmin ||y — (Xuw + 10)[




Dealing with an offset

Wis ?)\LS =arg min |y — Xw+1b)|5
weR? beR

=arg min (y— Xw+1b)I(y — Xw + 1b))
weR? beR

ZL(w,b)
Set gradient w.r.t. w and b to zero to find the minima:

A reminder on vector calculus
fw) = (Aw + b)I(Aw + b) = V, f(w) = 2AT(Aw + b)



Dealing with an offset

Wrs,brs = argrggl ly — (Xw + 1b)]3
XTXbrg + brsXT1 =Xy
1" X+ brs1T1 =17y
If X1 = 0, if the features have zero mean,
W = (XTX)" Xy

A 1 1
A'H"1'y = ;Zyi
i=1
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Dealing with an offset
Wrs,brs = arg Iglgl ly — (Xw + 1b)|3
XX w76 +brsXT1 =XTy
1" X6 +br5171 =17y
In general, when X*'1 £ 0,

If XT1 = 0.
T’V\LS — (XTX)_IXTy
A 1 &



Dealing with an offset

Wrs,brs = argmin ||y — (Xw + 1b)||5

w,b
XX w16 +brsXT1 =XTy
1" X6+ br5171 = 1Ty

T
If XT1 =0, In general, when X~ 1 # 0,
w - 1
wis = X'X)™' X'y b= 1xTq
A~ ] & n .
bis = P Yi X=X-1u
=1 ’&}LS = (iTi)—liTy

~ 1 <& N
brs = - 2; yi — p WLs
1=



Process for linear regression with intercept

Collectdata: & = {(x;,y)};

Decide onamodel: ¢, = 27w + b+ ¢;

Choose a loss function - least squares
Pick the function which minimizes loss on data

n
Wrs,brs = arg fglgl; (yi — (@] w+ b))2

Use function to make prediction on new examples x,..,

A T A -
ynew — xnewwLS —|_ bLS



Another way of dealing with an offset
Drs,brs = arg min ly — (Xw + 1|5

reparametrize the problem as X = [X, 1] and w = [lg]

Xw =



Why do we use least squares (i.e. £,-loss)?

Wps = argmin |ly — Xw|[3

_ (XTX)_ley

Consider y; =zl w+¢; where ¢ BL N 0,02
7

— P(yi;x,w,0) =



Why do we use least squares (i.e. £,-loss)?

Maximum Likelihood Estimator:

wmLe = argmax log P({yi}io1; {%i}iz1, W, 0)

T2
= argmax —nlog(ov2 +Z Wi — w)




Why do we use least squares (i.e. £,-loss)?

Maximum Likelihood Estimator:

WMLE = argmax logP({yz i= 17{37% i=1> W, U)

= argmax —nlog(oV2m) + Z

= argmm E —x w)

~ . T 2
Recall: wrs = arg muIJIl g (y@ — X, w)

1=1

Wrs = W LE = (XTX)_leY




Recap of linear regression

Data {(2i, y:) iz

Minimize the loss Maximize the likelihood

(Empirical Risk Minimization) (MLE)

Choose a loss Choose a Hypothesis class

e.g., £5-loss: (y; — xl.Tw)2 e.g.,y; = xl.Tw +e€, €~ N (0,67

n
Solve W ¢ = arg min Z (y; — xI'w)? Maximize the likelihood, o
w —~ c (yz — X w)
i=1 W\LE = arg mjx { —n log(a\/ﬂ) — Z 2—02}

i=1



Analysis of Error under additive Gaussian noise

T

Let's suppose y; = x; w* + €;and €; ~ N (0,6?), then this can be written as
y = Xw*+¢

X'X)~ X'y
= (XITX)" I XT(Xw* + ¢)
w* + (XTX)"XTe

W MLE

Maximum Likelihood Estimator is unbiased:



Analysis of Error under additive Gaussian noise

T

Let's suppose y; = x; w* + ¢€;and ¢; ~ N (0,62), then this can be written as
y = Xw*+¢

X'X)~ X'y
= (XITX)" I XT(Xw* + ¢)
w* + (XTX)"XTe

W MLE

Covariance is:



Analysis of Error under additive Gaussian noise

Let's suppose y; = xiTw* +¢€,ande; ~ N (0,6?), then this can be written as

y = Xw* + ¢, and the MLE is
wye = w* + (XIX)™1XTe

This random estimate has the following distribution:
E[Wy gl = w*, Cov(ivyg g) = E[0W — EWD(W — E[W])] = 6*(XTX)™!

Warg ~ A w*, e(XITX)™)

Interpretation: consider an example with x = |~!

- o O O O
J

_0 _1_

The covariance of the MLE, 6*(X?X) ™!, captures how each sample gives information

about the unknown w*, but each sample gives information about for different
(linear combination of) coordinates and of different quality/strength



Questions?



