Lecture 3: Linear regression (continued)

The regression problem in matrix notation

 $y_i = x_i^T w + \epsilon_i$ Linear model:

Least squares solution:

$$\widehat{w}_{LS} = \arg\min_{w} ||\mathbf{y} - \mathbf{X}w||_{2}^{2}$$
$$= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

What about an offset (a.k.a intercept)?

The regression problem in matrix notation

Linear model: $y_i = x_i^T w + \epsilon_i$

Least squares solution:

$$\widehat{w}_{LS} = \arg\min_{w} ||\mathbf{y} - \mathbf{X}w||_{2}^{2}$$
$$= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

Affine model: $y_i = x_i^T w + b + \epsilon_i$

Least squares solution:

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2$$
$$= \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2$$

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)\|_2^2$$

$$= \arg\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \underbrace{(\mathbf{y} - (\mathbf{X}w + \mathbf{1}b))^T(\mathbf{y} - (\mathbf{X}w + \mathbf{1}b))}_{\mathcal{L}(w,b)}$$

Set gradient w.r.t. w and b to zero to find the minima:

A reminder on vector calculus
$$f(w) = (Aw + b)^T (Aw + b) \implies \nabla_W f(w) = 2A^T (Aw + b)$$

$$egin{aligned} \widehat{w}_{LS}, \widehat{b}_{LS} &= \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2 \ \mathbf{X}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{X}^T \mathbf{1} &= \mathbf{X}^T \mathbf{y} \ \mathbf{1}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{1}^T \mathbf{1} &= \mathbf{1}^T \mathbf{y} \end{aligned}$$

If $\mathbf{X}^T \mathbf{1} = 0$, if the features have zero mean,

$$\widehat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\widehat{b}_{LS} = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T \mathbf{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

$$egin{aligned} \widehat{w}_{LS}, \widehat{b}_{LS} &= rg \min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2 \ \mathbf{X}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{X}^T \mathbf{1} &= \mathbf{X}^T \mathbf{y} \ \mathbf{1}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{1}^T \mathbf{1} &= \mathbf{1}^T \mathbf{y} \end{aligned}$$

If
$$\mathbf{X^T} \mathbf{1} = 0$$
,
 $\widehat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
 $\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i$

In general, when $\mathbf{X}^T \mathbf{1} \neq 0$,

$$egin{aligned} \widehat{w}_{LS}, \widehat{b}_{LS} &= \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2 \ \mathbf{X}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{X}^T \mathbf{1} &= \mathbf{X}^T \mathbf{y} \ \mathbf{1}^T \mathbf{X} \widehat{w}_{LS} + \widehat{b}_{LS} \mathbf{1}^T \mathbf{1} &= \mathbf{1}^T \mathbf{y} \end{aligned}$$

If
$$\mathbf{X^T1} = 0$$
,
 $\widehat{w}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
 $\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i$

In general, when $\mathbf{X}^T \mathbf{1} \neq 0$,

$$\mu = \frac{1}{n} \mathbf{X}^T \mathbf{1}$$

$$\widetilde{\mathbf{X}} = \mathbf{X} - \mathbf{1} \mu^T$$

$$\widehat{w}_{LS} = (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y}$$

$$\widehat{b}_{LS} = \frac{1}{n} \sum_{i=1}^n y_i - \mu^T \widehat{w}_{LS}$$

Process for linear regression with intercept

Collect data: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$

Decide on a **model:** $y_i = x_i^T w + b + \epsilon_i$

Choose a loss function - least squares

Pick the function which minimizes loss on data

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} \sum_{i=1}^{n} (y_i - (x_i^T w + b))^2$$

Use function to make prediction on new examples $x_{\rm new}$

$$\hat{y}_{\text{new}} = x_{\text{new}}^T \hat{w}_{LS} + \hat{b}_{LS}$$

Another way of dealing with an offset

$$\widehat{w}_{LS}, \widehat{b}_{LS} = \arg\min_{w,b} ||\mathbf{y} - (\mathbf{X}w + \mathbf{1}b)||_2^2$$

reparametrize the problem as
$$\overline{\mathbf{X}} = [\mathbf{X}, \mathbf{1}]$$
 and $\overline{w} = \begin{bmatrix} w \\ b \end{bmatrix}$

$$\overline{\mathbf{X}}\overline{w} =$$

Why do we use least squares (i.e. ℓ_2 -loss)?

$$\widehat{w}_{LS} = \arg\min_{w} ||\mathbf{y} - \mathbf{X}w||_2^2$$

= $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Consider
$$y_i = x_i^T w + \epsilon_i$$
 where $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$\implies y_i \sim$$

$$\implies P(y_i; x_i, w, \sigma) =$$

Why do we use least squares (i.e. ℓ_2 -loss)?

Maximum Likelihood Estimator:

$$\widehat{w}_{\text{MLE}} = \arg \max_{w} \log P(\{y_i\}_{i=1}^n; \{x_i\}_{i=1}^n, w, \sigma)$$

$$= \arg \max_{w} -n \log(\sigma \sqrt{2\pi}) + \sum_{i=1}^n -\frac{(y_i - x_i^T w)^2}{2\sigma^2}$$

Why do we use least squares (i.e. ℓ_2 -loss)?

Maximum Likelihood Estimator:

$$\widehat{w}_{\text{MLE}} = \arg \max_{w} \log P(\{y_i\}_{i=1}^n; \{x_i\}_{i=1}^n, w, \sigma)$$

$$= \arg \max_{w} -n \log(\sigma \sqrt{2\pi}) + \sum_{i=1}^n -\frac{(y_i - x_i^T w)^2}{2\sigma^2}$$

$$= \arg \min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2$$

Recall:
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

$$\widehat{w}_{LS} = \widehat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Recap of linear regression

$$Data \{(x_i, y_i)\}_{i=1}^n$$

Minimize the loss (Empirical Risk Minimization)

Choose a loss

e.g.,
$$\ell_2$$
-loss: $(y_i - x_i^T w)^2$

Solve
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Maximize the likelihood (MLE)

Choose a Hypothesis class

e.g.,
$$y_i = x_i^T w + \epsilon_i$$
, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Maximize the likelihood,

$$\widehat{w}_{\text{MLE}} = \arg\max_{w} \left\{ -n \log(\sigma \sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(y_i - x_i^T w)^2}{2\sigma^2} \right\}$$

Analysis of Error under additive Gaussian noise

Let's suppose $y_i = x_i^T w^* + e_i$ and $e_i \sim \mathcal{N}(0, \sigma^2)$, then this can be written as $\mathbf{y} = \mathbf{X} w^* + e$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} w^* + \epsilon)$$

$$= w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

Maximum Likelihood Estimator is unbiased:

Analysis of Error under additive Gaussian noise

Let's suppose $y_i = x_i^T w^* + \epsilon_i$ and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, then this can be written as $\mathbf{y} = \mathbf{X} w^* + \epsilon$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} w^* + \epsilon)$$

$$= w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

Covariance is:

Analysis of Error under additive Gaussian noise

Let's suppose $y_i = x_i^T w^* + \epsilon_i$ and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, then this can be written as $\mathbf{y} = \mathbf{X} w^* + \epsilon$, and the MLE is

$$\widehat{w}_{\text{MLE}} = w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

This random estimate has the following distribution:

$$\mathbb{E}[\hat{w}_{\text{MLE}}] = w^*, \operatorname{Cov}(\hat{w}_{\text{MLE}}) = \mathbb{E}[(\hat{w} - \mathbb{E}[\hat{w}])(\hat{w} - \mathbb{E}[\hat{w}])^T] = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

$$\hat{w}_{\text{MLE}} \sim \mathcal{N}(w^*, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Interpretation: consider an example with
$$\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$$

The covariance of the MLE, $\sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$, captures how each sample gives information about the unknown w^* , but each sample gives information about for different (linear combination of) coordinates and of different quality/strength

Questions?