
Lecture 27:
Deep Generative Models

- Unsupervised learning

- Dimensionality reduction

- PCA

- Auto-encoder

- Clustering

- -means

- Spectral,t-SNE,UMAP

- Generative models

- Density estimation

k

https://www.whichfaceisreal.com/- HW4 due Sunday March 13th Midnight

- At most 3 days of late days allowed (Even if you have more remaining)

• traditional parametric generative model

• Gaussian:  

• Gaussian Mixture Models (GMM) 
 

fμ,σ(x) =
1

2πσ2
e− (x − μ)2

2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)

2

2σ2
i

Images from “on GANs and GMMs”, 2018, Richardson &Weiss

Deep generative model
• traditional parametric generative model

• Gaussian:  

• Gaussian Mixture Models (GMM) 
 

• Because we have the explicit p.d.f,  
easy to train with expectation-maximization

• Deep generative model
• high representation power with sharp images

• easy to sample

• but no tractable evaluation of the density (i.e. p.d.f.)

fμ,σ(x) =
1

2πσ2
e− (x − μ)2

2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)

2

2σ2
i

Deep generative model
• sampling from a deep generative model, parametrized by

• first sample a latent code of small dimension ,
from a simple distribution like standard Gaussian

• pass the code through a neural network of your choice, with
parameter

• the output sample is the sample of this deep
generative model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)

w
x ∈ ℝd

4

⋮
z[1]

z[k]

x[1]

⋮ ⋮
x[d]

Deep generative model 
using deep deconvolutional layers

5

Generative model
• a task of importance in unsupervised learning is fitting a

generative model so that we can sample from it

• classically, if we fit a parametric model like mixture of

Gaussians, we write the likelihood function explicitly in terms of
the model parameters, and maximize it using some algorithms 

•

• deep generative models use neural networks, but the likelihood
of deep generative models cannot be evaluated easily, so we
use alternative methods

maximizew

n

∑
i=1

log (Pw(xi)

p.d.f.

)

Goal

• Given examples coming i.i.d from an unknown
distribution , train a generative model that can
generate samples from a distribution close to

{xi}n
i=1

P(x)
P(x)

• Any idea how to train for Gaussian , so that it is close  
to the samples ?

fw(Z) Z
{xi}n

i=1

Adversarial training: a new way to train a deep generative model

“Generative Adversarial Nets”, Goodfellow et al.

GW(Z)

Dθ(X)

Dθ(X)

GW(Z)

min
W

max
θ

V(GW, Dθ)

• The discriminator tries to identify
which is real and which is fake

• The generator tries to fool the
discriminator

Adversarial training
• Classification by a discriminator

• Consider the example of SPAM detection

• Each sample is an email

• Distribution of true email is

• Suppose spammers generate spams with distribution

• Training a Spam detector: Typical classification task

• Generate samples from true emails and label them

• Generate samples from spams and label them

• Using these as training data, train a classifier  

that outputs  
 

  
 
for some neural network with parameter  
(this is the logistic regression for a binary classification)

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃
1

1 + e−fθ(x)

fθ(⋅) θ

• Applying logistic regression, we want to solve 
 
  

 
 
 
 
 

• in adversarial training, it is customary to write 

 , which is called a discriminator 

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution

max
θ ∑

i:yi=1

log(1
1 + e−fθ(xi)) + ∑

i:yi=0

log(1 −
1

1 + e−fθ(xi))

1
1 + e−fθ(x)

= Dθ(x)

max
θ

ℒ(θ) = ∑
xi∼Preal(⋅)

log Dθ(xi) + ∑
xi∼Qgen(⋅)

log(1 − Dθ(xi))

Preal(⋅)
Qgen(⋅)

min
θ

log(1 + e−fθ(xi)) min
θ

log(1 + e fθ(xi))

= log(
1

1 − 1
1 + e−fθ(xi)

)

Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, then the

spammer’s job is to generate spams that can fool the detector by making the
likelihood of the “spams being classified as spams” small: 
 

• where 0 labelled examples are coming from the distribution , which is
modeled by a deep neural network generative model, i.e.  
 , where

• The minimization can be solved by finding. The “best” generative model that
can fool the discriminator 
 

min
Qgen(⋅)

ℒ(θ) = ∑
xi∼Preal(⋅)

log Dθ(xi)

does not depend on Qgen(⋅)

+ ∑
xi∼Qgen(⋅)

log(1 − Dθ(xi))

Qgen(⋅)

xi = Gw(zi) zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on w

+ ∑
zi∼𝒩(0,Ik×k)

log(1 − Dθ(Gw(zi)))

Adversarial training
• Now we have a game between the spammer and the spam

detector: 
 

• Where is the distribution of real data (true emails), and
 is the distribution of the generated data (spams)

that we want to train with a deep generative model
• jointly training the discriminator and the generator is called

adversarial training

• Alternating method is used to find a solution of this non-convex

minimax optimization

min
w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(GW(zi)))

P(⋅)
fw(zi) ∼ Q(⋅)

Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed generator) 
  

• First sample examples from real data (in the training set) and the
generator data  
(for the current iterate of the generator weight)

• compute the gradient for those samples using back-propagation

• Update the discriminator weight by adding the gradient with a choice
of a step size 

w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

n
xi ∼ Gw(zi)

w
2n
θ

θ ← θ + η∇ℒ(w, θ)

Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed discriminator) 
 

• Consider the gradient update on a single sample 
 
  

for a single sampled from a Gaussian

• The gradient update is 

 
  

  

 
 
 
by the chain rule with

θ

min
w ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) (∇x Dθ(x)

−1
1 − Dθ(x))

x = Gw(zi)

Not only is GAN amazing in generating realistic samples

http://whichfaceisreal.com

It opens new doors to exciting applications
• Cycle-GAN

https://www.youtube.com/watch?v=PCBTZh41RisAny idea how to do this?

Style transfer with generative model
• If we have paired training data,

• And want to train a generative model G(x,z)=y,

• This can be posed as a regression problem

x Y

z

• What do we do when we do not have paired data?

How do we do style transfer without paired data? Cycle-GAN

20

How do we do style transfer without paired data? Cycle-GAN

z

Adversarial training

Cycle loss

Ghorse-to-zebra Gzebra-to-horse

https://www.youtube.com/watch?v=PCBTZh41Ris

Super resolution

Low resolution image
Estimated  
high resolution image

True 
high resolution image

The learned latent space is important

z x

z[1]

z[2]
Gw(⋅)

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage

How do we check if we found the right manifold (of faces)?

• latent traversal

Can we make the relation between the latent
space and the image space more meaningful?

• Disentangling
• GANs learn arbitrary mapping from z to x
• As the loss only depends on the marginal distribution of

x and not the conditional distribution of x given z (how z
is mapped to x)

Disentangling seeks meaningful mapping from to z x

27

Fully-supervised case

28

c1 c2 c3

Train a conditional GAN, where

 is a numerical representation of the labels  

given in the training data, and is drawn from Gaussian
(c1, c2, c3)

z

Unsupervised training of Disentangled GAN

29

Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want to look
like training data (which is achieved by adversarial loss
provided by a discriminator)

• 2. We also want the controllable latent code to be
predictable from the image

• add a NN regressor that predicts , and train the
generator that makes the prediction accuracy high 
(note that both this predictor and the generator
works to make the prediction accurate, unlike
adversarial loss)

• 3. We also want each code to control distinct
properties

• add a NN that predicts which code was changed 

Gw(z)

c

̂c(x)

c1
c2
c3

D() = {real,fake}

minimize ∥ ̂c() − c∥2

̂i() ≃ i

Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer

31

Discriminator  
encourages 
output to be realisticx

Predictor makes sure that

the changes in make

noticeable changes in

c
x

̂c(X)

̂i(x1, x2)
Contrastive regularizer

detects which latent code  
was the same/different  
in a paired

ci

(x1, x2)

Questions?

