
Lecture 27: 
Deep Generative Models

- Unsupervised learning

- Dimensionality reduction


- PCA

- Auto-encoder


- Clustering

- -means

- Spectral,t-SNE,UMAP


- Generative models

- Density estimation

k

https://www.whichfaceisreal.com/- HW4 due Sunday March 13th Midnight

- At most 3 days of late days allowed (Even if you have more remaining)



• traditional parametric generative model

• Gaussian:  

      


• Gaussian Mixture Models (GMM) 
 

    

fμ,σ(x) =
1

2πσ2
e− (x − μ)2

2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)

2

2σ2
i

Images from “on GANs and GMMs”, 2018, Richardson &Weiss



Deep generative model
• traditional parametric generative model


• Gaussian:  

      


• Gaussian Mixture Models (GMM) 
 

    


• Because we have the explicit p.d.f,   
easy to train with expectation-maximization


• Deep generative model 
• high representation power with sharp images

• easy to sample

• but no tractable evaluation of the density (i.e. p.d.f.)
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Deep generative model
• sampling from a deep generative model, parametrized by 


• first sample a latent code  of small dimension , 
from a simple distribution like standard Gaussian 


• pass the code through a neural network of your choice, with 
parameter 


• the output sample  is the sample of this deep 
generative model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)
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Deep generative model 
using deep deconvolutional layers
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Generative model
• a task of importance in unsupervised learning is fitting a 

generative model so that we can sample from it

• classically, if we fit a parametric model like mixture of 

Gaussians, we write the likelihood function explicitly in terms of 
the model parameters, and maximize it using some algorithms 

•
              


• deep generative models use neural networks, but the likelihood 
of deep generative models cannot be evaluated easily, so we 
use alternative methods

maximizew
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Goal

• Given examples  coming i.i.d from an unknown 
distribution , train a generative model that can 
generate samples from a distribution close to 

{xi}n
i=1

P(x)
P(x)

• Any idea how to train  for Gaussian , so that it is close  
to the samples ?

fw(Z) Z
{xi}n

i=1



Adversarial training: a new way to train a deep generative model

“Generative Adversarial Nets”, Goodfellow et al.

GW(Z )

Dθ(X )

Dθ(X )

GW(Z )

min
W

max
θ

V(GW, Dθ)

• The discriminator tries to identify 
which is real and which is fake


• The generator tries to fool the 
discriminator



Adversarial training
• Classification by a discriminator


• Consider the example of SPAM detection 


• Each sample  is an email 


• Distribution of true email is  


• Suppose spammers generate spams with distribution  

• Training a Spam detector: Typical classification task 


• Generate samples from true emails and label them  


• Generate samples from spams and label them  

• Using these as training data, train a classifier  

that outputs  
 

                
 
for some neural network  with parameter   
(this is the logistic regression for a binary classification) 

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃
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1 + e−fθ(x)

fθ( ⋅ ) θ



• Applying logistic regression, we want to solve 
 
            

 
 
 
 
 

• in adversarial training, it is customary to write 

   , which is called a discriminator 

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution 

max
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i:yi=1

log( 1
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Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, then the 

spammer’s job is to generate spams that can fool the detector by making the 
likelihood of the “spams being classified as spams” small: 
 
 


• where 0 labelled examples are coming from the distribution , which is 
modeled by a deep neural network generative model, i.e.  
                       , where 


• The minimization can be solved by finding. The “best” generative model that 
can fool the discriminator 
 

min
Qgen(⋅)

ℒ(θ) = ∑
xi∼Preal(⋅)

log Dθ(xi)

does not depend on Qgen(⋅)

+ ∑
xi∼Qgen(⋅)

log(1 − Dθ(xi))

Qgen( ⋅ )

xi = Gw(zi) zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
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log Dθ(xi)

does not depend on w

+ ∑
zi∼𝒩(0,Ik×k)

log( 1 − Dθ( Gw(zi) ) )



Adversarial training
• Now we have a game between the spammer and the spam 

detector: 
 




• Where  is the distribution of real data (true emails), and 
 is the distribution of the generated data (spams) 

that we want to train with a deep generative model 
• jointly training the discriminator and the generator is called 

adversarial training

• Alternating method is used to find a solution of this non-convex 

minimax optimization

min
w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(GW(zi)))

P( ⋅ )
fw(zi) ∼ Q( ⋅ )



Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed generator ) 
         
          


• First sample  examples from real data (in the training set) and the 
generator data   
(for the current iterate of the generator weight )


• compute the gradient for those  samples using back-propagation


• Update the discriminator weight  by adding the gradient with a choice 
of a step size 
                                   

w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

n
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w
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θ ← θ + η∇ℒ(w, θ)



Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed discriminator ) 
 
     


• Consider the gradient update on a single sample 
 
      

for a single  sampled from a Gaussian

• The gradient update is 

 
    

         

 
 
 
by the chain rule with 

θ

min
w ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) (∇x Dθ(x)

−1
1 − Dθ(x) )

x = Gw(zi)



Not only is GAN amazing in generating realistic samples

http://whichfaceisreal.com



It opens new doors to exciting applications
• Cycle-GAN





https://www.youtube.com/watch?v=PCBTZh41RisAny idea how to do this?



Style transfer with generative model
• If we have paired training data,


• And want to train a generative model G(x,z)=y, 


• This can be posed as a regression problem

x Y

z

• What do we do when we do not have paired data?



How do we do style transfer without paired data? Cycle-GAN
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How do we do style transfer without paired data? Cycle-GAN

z

Adversarial training

Cycle loss

Ghorse-to-zebra Gzebra-to-horse

https://www.youtube.com/watch?v=PCBTZh41Ris


Super resolution

Low resolution image
Estimated  
high resolution image

True 
high resolution image



The learned latent space is important

z x

z[1]

z[2]
Gw( ⋅ )

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage



How do we check if we found the right manifold (of faces)?

• latent traversal



Can we make the relation between the latent 
space and the image space more meaningful?

• Disentangling 
• GANs learn arbitrary mapping from z to x 
• As the loss only depends on the marginal distribution of 

x and not the conditional distribution of x given z (how z 
is mapped to x)



Disentangling seeks meaningful mapping from  to z x
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Fully-supervised case

28

c1 c2 c3

Train a conditional GAN, where 

 is a numerical representation of the labels  

given in the training data, and  is drawn from Gaussian
(c1, c2, c3)

z



Unsupervised training of Disentangled GAN
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Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want  to look 
like training data (which is achieved by adversarial loss 
provided by a discriminator)


• 2. We also want the controllable latent code  to be 
predictable from the image


• add a NN regressor that predicts , and train the 
generator that makes the prediction accuracy high 
(note that both this predictor and the generator 
works to make the prediction accurate, unlike 
adversarial loss)


• 3. We also want each code to control distinct 
properties 

• add a NN that predicts which code was changed 

    

Gw(z)

c

̂c(x)

c1
c2
c3

D(        ) = {real,fake}

minimize ∥ ̂c( ) − c∥2

̂i( ) ≃ i



Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer

31

Discriminator  
encourages 
output  to be realisticx

Predictor makes sure that 

the changes in  make 

noticeable changes in 

c
x

̂c(X)

̂i(x1, x2)
Contrastive regularizer

detects which latent code  
was the same/different  
in a paired 

ci

(x1, x2)



Questions?


