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Traditional algorithms

Social media mentions of Cats vs. Dogs

Reddit Google Twitter?
Top 100 /r/aww Submissions Video Search Interest
About Calts and Dogs Catts Versus Dogs
I
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Write a program that sorts
tweets into those containing
‘cat’, “dog’, or other

Graphics courtesy of https://theoutline.com/post/3128/dogs-cats-internet-popularity?zd=1
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Twitter?
cats = []
dogs = []
other = []

for tweet in tweets:

1f “cat” in tweet:
cats.append (tweet)
elseif “dog” in tweet:

dogs.append (tweet)
else:

other.append (tweet)

return cats, dogs, other
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Machine learning algorithms

Write a program that sorts
Images into those containing
"birds”, “airplanes”, or other.
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birds = []
planes = []
other = []
for image 1in images:
if bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other




Machine learning algorithms

birds = |[]

planes = []

Write a program that sorts

images into those containing e in images.
“birds”, “airplanes”, or other. if bird in image:
birds.append (image)

%57 r.=-he: airplane elseif plane in image:
Eagﬁﬁgt other planes.append (image)
Sl NEL §EEE o

other . append (tweet)
A

Light '
g °eo o ° o ® return birds, planes, other
°
o o ©
o °
~ ° ° ®
2 ° ® 1. Find appropriate representation of the data
® o ° °
Q2 ® ®
o o °
®
°
Dark ¢ ¢ o 9

No Circle  feature 1 Circle



Machine learning algorithms

birds = |[]

planes = []

Write a program that sorts

images into those containing e in images.
“birds”, “airplanes”, or other. if bird in image:
birds.append (image)

elseif plane in image:

planes. append (image)
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Machine learning algorithms

birds = |[]

planes = []

Write a program that sorts e
images into those containing ;refmag:]in smages:
“birds”, “airplanes”, or other. if bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other

E 1. Find appropriate representation of the data
= 2. Crowdsource some samples to get labels
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= ‘. - ® 3. Run a machine learning algorithm
- to find decision boundaries
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Machine learning algorithms

Write a program that sorts
Images into those containing
"birds”, “airplanes”, or other.
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birds = []
planes = []
other = []
for image 1n images:
if bird in image:
birds.append (image)
elseif plane in image:
planes. append (image)
else:
other . append (tweet)

return birds, planes, other

The decision rule of
1f “ecat” 1n tweet:

IS hard coded by expert.

The decision rule of
1f bird 1in image:

iIs LEARNED using DATA



Machine learning is incredibly powerful and can have
significant (unintended) negative consequences on
society through targeting, excluding, and misusing.

Learning objectives of this course:

-introduction to the fundamental concepts of machine learning

- analysis and implementation of machine learning algorithms

- knowing how to use machine learning responsibly and robustly



Flavors of ML

Regression

Predict continuous value:
ex: stock market, credit score,
temperature, Netflix rating

Classification

Predict categorical value:
loan or not? spam or not? what
disease is this?

[y
"Mt]

Unsupervised
Learning

Predict structure:

tree of life from DNA, find
similar images, community
detection

Mix of statistics (theory) and algorithms (programming)



CSE446: Machine Learning

What this class is:

 Fundamentals of ML: bias/variance tradeoff, overfitting,
optimization and computational tradeoffs, supervised learning

(e.g., linear, boosting, deep learning), unsupervised models (e.g.
k-means, EM, PCA)

* Preparation for further learning: the field is fast-moving, you will
be able to apply the basics and teach yourself the latest

What this class is not:

* Survey course: laundry list of algorithms, how to win Kaggle

 An easy course: familiarity with intro linear algebra and probability
are assumed, homework will be time-consuming



Course Logistics

« All the information can be found at Course Website:
https://courses.cs.washington.edu/courses/cse446/22wi/

e All zoom links are on Canvas
* First week lectures 1-3
* First week sections
* OHs

* Instructor: Sewoong Oh

* 9 amazing TAs: Jakub Filipek, Joshua Gardner, Thai Quoc Hoang, Chase King,
Tim Li, Pemi Nguyen, Hugh Sun, Yuhao Wan, Kyle Zhang

* Lectures: MWF 9:30-10:20 (first week on Zoom)

* Questions/announcements/discussions: EdStem, link on website
* Personal questions: cse446-staff@cs.washington.edu
 Anonymous feedback: link on website

» Office hours: starts on Tuesday, schedule on the website



https://courses.cs.washington.edu/courses/cse446/22wi/
mailto:cse446-staff@cs.washington.edu

Prerequisites

* Formally:
* Linear algebra in MATH 308
« Algorithm complexity in CSE 312
» Probability in STAT 390 or equivalent

« Familiarity with:
 Linear algebra
* linear dependence, rank, linear equations, SVD
» Multivariate calculus
 Differentiate a multi-variate function
» Probability and statistics
« Distributions, marginalization, moments, conditional expectation
 Algorithms

» Basic data structures, complexity

* “Can | learn these topics concurrently?”
« Use HWO to judge skills
» See website for review materials!



Grading

* 5 homework (100%=12%+22%+22%+22%+22%)
 Collaboration is okay but must write who you collaborated with.

* You can spend an arbitrary amount of time discussing and working
out a solution with your listed collaborators, but do not take notes,
photos, or other artifacts of your collaboration. Erase the board
you were working on, and once you're alone, write up your answers
yourself.

* NO exams
 Extra credit for submitting the proof of course evaluation in the end

» We will assign random subgroups as PODs to collaborate/discuss
(when dust clears)



Homework

« HW 0O is out (Due next Tuesday Jan 11th Midnight)
* Short review
» Work individually, treat as barometer for readiness
HW 1,2,3,4
* They are not easy or short. Start early.
Submit to Gradescope (instructions on the website)
Regrade requests on Gradescope
« within 7 days of release of the grade
There is no credit for late work, you get 5 late days
« if HW1 is late by 23 hours, then you used 1 late day
« If HW1 is late by 25 hours, then you used 2 late days



Homework

« HW 0O is out (Due next Tuesday Jan 11th Midnight)
* Short review
» Work individually, treat as barometer for readiness
HW 1,2,3,4
* They are not easy or short. Start early.
Submit to Gradescope (instructions on the website)
Regrade requests on Gradescope
« within 7 days of release of the grade
There is no credit for late work, you get 5 late days
« if HW1 is late by 23 hours, then you used 1 late day
« If HW1 is late by 25 hours, then you used 2 late days

1. All code must be written in Python
2. All written work must be typeset (e.g., LaTeX)

See course website for tutorials and references.




Weekly Sections

« Everyone is enrolled in a 50 minutes in-person section on Thursday.
» Except for week 1

Taught by very talented TAs.

You are not required to attend.

There is no attendance or quiz.

It is meant to help you understand the lectures better and deeper.



Weekly Sections

* Previously, We have seen steep decline in attendance in morning
sections.

« This time, we have decided to cancel the two morning sections, and
instead offer more office hours and dedicate more resources to
responding on EdStem

» Section AA (8:30-9:20): cancelled

* Section AB (9:30-10:20): cancelled

« Section AC (10:30-11:20): Chase King, LOW 105
« Section AD (11:30-12:20): Kyle Zhang, LOW 105
« Section AE (12:30-1:20): Yuhao Wan, CDH 110B
» Section AF (1:30-2:20): Jakub Filipek, FSH 107 0O

* We ask those registered in AA and AB to attend other sections
« If this is an issue, please contact sewoong@cs.washington.edu



mailto:sewoong@cs.washington.edu

Textbooks

= Required Textbook (optional):

" Machine Learning: a Probabilistic Perspective,
Kevin Murphy

Machine Learning

A Probabilistic Perspective

= Optional Books (free PDF): m

" The Elements of Statistical Learning: Data Mining, SR
Inference, and Prediction; Trevor Hastie, Robert e
Tibshirani, Jerome Friedman

Data Mining, Inference,
and Prediction

@ Springer



Enjoy!

= ML is becoming ubiquitous in science, engineering and beyond
= |t's one of the hottest topics in industry today

= This class should give you the basic foundation for applying ML and
developing new methods

= The fun begins...



Maximum Likelihood
Estimation




Your first consulting job

Client. | have a special coin, if | flip it, what’s the
probability it will be heads?

You: | need to collect data.

You: The probability is:

Client: Why? What is the principle behind your prediction?



Modelling Coin Flips: Binomial Distribution

. Data: sequence 9 = (H,H,T,H,T, ...)
- k heads out of n flips
- Hypothesis:
* Flips are i.i.d. (independent and identically distributed):
 Independent events
- |dentically distributed according to Bernoulli distribution
- P(Heads) =6, P(Tails)=1 -6
for some unknown parameter 8 € [0,1]
- Generative model:

. Probability that the data & is generated by hypothesis 0 is
P(2;0) =



Maximum Likelihood Estimation

. Data: sequence ¥ = (H,H,T,H,T, ...),
- k heads out of n flips
. Hypothesis: P(Heads) =6, P(Tails)=1 — 0
- Likelihood:
P(2;0) = 61 -0 *
likelihood
« Maximum likelihood estimation (MLE): Choose 6 that
maximizes the probability of observed data:
¢/9\MLE = arg mglx P(2;0)

= arg max log P(2; 0)
0



Your first learning algorithm
P(92;0)

@MLE = argmax log P(2;0)
0
= arg max log{6*(1 — )"~}
0

= argmax klogf+ (n — k)log(l — 0)} =
0 é\MLE 0
« Use the fact that derivative is zero at maxima (and also minima)

o Set derivative to zero,

d
and find @ satisfying: pT log P(Z;,0) =0



How good is MLE?

- We treat MLE (/9\MLE as a random variable, where there is a ground

truth parameter 6* that generates the data & = (HHTTH ...) of a
fixed size n

- What can we say about this random variable @MLE?

* First good property of MLE for Binomial: unbiased
* Definition: bias of our MLE is

Bias(é\MLE) = [EQZNPH* [é’MLE] — 0% =

« Expectation describes how the estimator behaves on average



How many flips do | need?

. Consider running many experiments with * = —, and observe

many instances of the random variable

_k

OvirLe =
Client: | flipped the coin 5 times and got 2 heads. - |

10

Ovire =

Client. | fl|pped the coin 50 times and got 30 head$
Orre =

Client: they are both unbiased, which one is right? Why?
0%(1 — %)

n

The width of typical uncertainty is about |/ Var(dy ) =\/




Quantifying Uncertainty
* The Variance is the expected squared deviation from the mean:

R R R 2
Variance(0ypp) := E [(HMLE — E[GMLE]) ]

* As a rule of thumb

@MLE o~ [E[/H\MLE] + \/ Variance(/@\MLE)

« Second good property of MLE: minimum (asymptotic) variance
i.e, for all estimators 0, lim Var(0,;g) < lim Var(0)

n—oo n—oo



Expectation versus High Probability

e Tail bound of a random variable
« Forany € > 0 can we bound IP)(WMLE — IE[19MLE]| > 6) ?

Markov’s inequality
For any ¢ > 0 and non-negative random variable X

px > 0 < B2

« Exercise: Apply Markov’s inequality to obtain bound.
. N A 2



Maximum Likelihood Estimation

- Observe X, X,, ..., X, drawn i.i.d. from P(X;; @) for some true 6 = 6*
_ Likelihood function: L, (6) = HP(Xi; 0)

i=1
. Log-likelihood function: () = logL,(0) = Z log P(X;; 0)

i=1
. Maximum Likelihood Estimator (MLE): 0, p = argmax?, (0)
0



Questions?



Lecture 2: MLE for Gaussian
and linear regression

W



Recap: Maximum Likelihood Estimation

- Observe X, X,, ..., X, drawn i.i.d. from P(X;; @) for some true 6 = 6*
_ Likelihood function: L, (6) = HP(Xi; 0)

i=1
. Log-likelihood function: () = logL,(0) = Z log P(X;; 0)

i=1
. Maximum Likelihood Estimator (MLE): 0, p = argmax?, (0)
0



What about continuous variables?

« Client. What if | am measuring a continuous variable?
 You: Let me tell you about Gaussians...
- A Gaussian random variable is written as X ~ /' (u, 6%)
with mean ¢ = E[X] and variance 6% £ E [ (X — [E[X])z]

« The p.d.f. (Probability Density Function) of X is
1 _-w?
P(X;,M,Gz) = e 272

\/ 2702 [T

0.8
0.6
‘0.4

0.2

0.0




Some properties of Gaussians

« affine transformation
(multiplying by scalar and adding a constant)

+ X ~ N (u,0°)
cY=aX+b = Y~ N(au+ b,a’c?)

« Sum of Gaussians
o X ~ N (py, o3)
+ Y ~ N (uy, o7)
CZ=X+Y => Z~ N(uy+ py, 0%+ 62)



MLE for Gaussian

- Hypothesis: i.i.d. samples I = {x, x,, ..., x,} from (4, o)
P(D;p,6%) = P(x;,....%; 4, 0%)
= P(x;p,0 JE P(xy; pt, 6°) X ++-P(x,; pt, 6°)

1 = w?
= e 202
21
* Log-likelihood of data:
log P(D; u, 6%) = — nlog(cy/27) — Z
i=1

- What is ¢/9\MLE for @ = (u, %) ?

©2018 Kevin Jamieson



Your second learning algorithm:

MLE for mean of a Gaussian
e \What’s MLE for mean?

d d Ly (x; — p)?
2 P@;,2=—[—1 ) — i ]
75 08P @i 0Y) = | —nlogloy/2m) Z:, —




MLE for variance

« Again, set derivative to zero:

d . d L
—log P(Z:p1,0) = d—[—nlog(m/Zﬂ) -y

i=1

(x; — M)2]

o 202




What can we say about the MLE?

* MLE:
1 n
. HMLE = _in
g

n
) l ( o~ )2
. OMLE N Xi — HMLE
=1

« MLE for the mean of a Gaussian is unbiased
MLE for the variance of a Gaussian is biased

. E[G%y 5] # 0°

Unbiased variance estimator:

1 n

~2 — _n 2

. Cunbiased — 1 Z (xi /’tMLE)
i=1



Maximum Likelihood Estimation

Observe X, X, ..., X, drawn i.i.d. from P(X;; @) for some true 6 = 6*
Likelihood function: L (6) = HP(Xi; 0)
i=1

Log-likelihood function: 7, (0) = logL (0) = 2 log P(X;; 0)
i=1
. Maximum Likelihood Estimator (MLE): 0, p = argmax?, (0)
0

Properties (under benign regularity conditions—smoothness, identifiability, etc.):
: : . O —0.
* Asymptotically consistent and normal: *MLE—2= ~ A/(0,1)

 Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)



Recap

* Learning is...

* Collect some data
* E.g., coin flips

Data {x;}



Recap

* Learning is...
« Collect some data
* E.g., coin flips
« Choose a hypothesis class or model
* E.g., binomial

Hypothesis/ | i.i.d. Py

Model P, Data {x;}



Recap

* Learning is...

» Collect some data
* E.g., coin flips

« Choose a hypothesis class or model
* E.g., binomial

* Choose a loss function
 E.g., data likelihood

n

min £(0, x; ma 0, x,
in ) £(0.5) or max Y u.x)

i=l i=1

Hypothesis/ | i.i.d. Py

Model P, Data {x;}



Recap

* Learning is...
* Collect some data
* E.g., coin flips
« Choose a hypothesis class or model
* E.g., binomial
« Choose a loss function
 E.g., data likelihood
« Choose an optimization procedure
* E.g., set derivative to zero to obtain MLE -

min £(0, x; ma 0, x,
in ) £(0.5) or max Y u.x)

i=l i=1

Hypothesis/ | i.i.d. Py
Model P,

)

Data {x;} Optimizer



Recap

* Learning is...
* Collect some data
* E.g., coin flips
« Choose a hypothesis class or model
* E.g., binomial
« Choose a loss function
 E.g., data likelihood

« Choose an optimization procedure
* E.g., set derivative to zero to obtain MLE

n

» Justifying the accuracy of the estimate min D £0.x) or max D u®.x)
 E.g., Markov’s inequality =l ] i=1

Hypothesis/ | i.i.d. Py
Model P,

)

Data {x;} Optimizer



Linear Regression

UNIVERSITY of WASHINGTON



The regression problem, 1-dimensional

You want to sell your house that is 2,500 sq.ft.
Q. What is the right price?

Collect past sales data on zillow.com:

y = House sale price and x = {# sq. ft.}

Training Data: z, e R 4, €R
® n

Sale Price
( ]
( ]
( ]

# square feet


http://zillow.com

Process

1. Decide on a model/hypothesis class

assume house sale price is a linear function of square feet.

2. Find the function/model/hypothesis which explains/fits the data best

3. Use function to make prediction on new examples
How much should you put your house on the market?



Fit a function to our data, 1-dimension

Given past sales data on zillow.com, predict:

y = House sale price from
x = {# sq. ft.}

o 1. Training Data: r; € R
{(zi,yi) }iey  wiER

2. Hypothesis/Model: linear
Vi =w x5 + €

Sale Price

3. Measure of good fit: £5-loss

n n
min Z (y; — wx))* = 2 g?
i=1 i=1

# square feet

weR “


http://zillow.com

The regression problem, d-dimensions

Given past sales data on zillow.com, predict:

y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

. 1. Training Data: r; € R
{(wiyys) e, vieR
S
& 2. Hypothesis/Model: linear
s
3 y, = wix + ¢

3. Measure of good fit: £5-loss

n n
min Z (v, — wlix)? = Z e?
=1 =1

# square feet

weRd 4


http://zillow.com

The regression problem in matrix notation

Data:

Y1

Yn

-

Ly

T
L,

d : # of features/size of the input
n : # of examples/datapoints



The regression problem in matrix notation

Data: Y1

Yn

Linear ¢y = az{w + €1

Model:
R &
Yo = To W + €9

T
y’l’L :xnw_l_e’n

-

Ly

T
L,

d : # of features/size of the input
n : # of examples/datapoints

y = Xw + €



The regression problem in matrix notation

Data: _yl_ —x?_ d : # of features/size of the input
ata: v = X — n : # of examples/datapoints
| Yn _ajg_
Linear 1y = ZC,{’w + €1 y = Xw + €
Model:
_.T
Yo = To W + €9
¢ »,-norm of a vector:
(also known as Euclidean norm)
T _ 2 2 2
Up = g[jnw—|—€n ||€||2— €] +€2+"°+€d
it follows that
d
" Y et = llell} = e’
£y-Loss: W ¢ = arg mirb 2 (y; — xl.Tw)2 i=1

weR i1

this is also known as Least Squares solution



The regression problem in matrix notation

_y1_ (1] d : # of features/size of the input

Data: n : # of examples/datapoints

Yn x

Linear Y1 = gc{w +€1 y=Xw-+c¢e€ £»-norm of a vector:

Model: - e 2
Yo = :EQT’UJ—I—EQ ||€||2=\/€1 +el 4+

it foIIows that

) 2 T
E = |lell; = €€
Yn zacgw—l—en lell>

arg min ||y — lel%
w

£yLoss: W g = arg mlrzl Z (y; — xl w)?
weR

= argmin (y — Xw)!(y — Xw)



The regression problem in matrix notation

Wi = arg min (y — Xw) (y — Xw)
weR?

Set gradient w.r.t. w to zero to find the minima:




The regression problem in matrix notation

s = arg min ||y — Xul [

— argmin(y — Xw)?! (y — Xw)

_ <XTX)_1XTy

“Closed form” solution!




Questions?



Lecture 3: Linear regression
(continued)

W



The regression problem in matrix notation

Linear model: Yy; = ZU;-TIU + €;

Least squares solution:

s = argmin [y — Xuw|[3

= (X'X)' X"y

What about an offset
(a.k.a intercept)?




The regression problem in matrix notation

Linear model: Yy; = a:?w + €;

Least squares solution:

s = argmin [y — Xuw|[3

= (X'X)' X"y

Affine model:  y; =z} w + b + ¢

Least squares solution:

n

o~ . 2
wrs,brs = arg min (yi — (z] w+b))
w7
i—1

= argmin ||y — (Xuw + 10)[




Dealing with an offset

Wrs,brs = argmin|ly — (Xw + 1b)||3

w,b

Set gradient w.r.t. w and b to zero to find the minima:



Dealing with an offset

Wrs,brs = argmin |ly — (Xw + 10)|13
XX +brsXT'1 =Xy
11X @ +br5171 =11y
If X1 = 0, if the features have zero mean,

s = (XI'X)"'X'Y

BLS = %Zyz
i=1



Dealing with an offset

Wy, brs = argmin ||y — (Xw + 10)| |2

XTX@LS + bLSXTl — XTy
].TX?/ELS _|_ bLS]_T]_ — ]_Ty

If XT1 =0, In general, when X711 + 0,
s = (XTX)"1XTY

~ 1 <&
brs = ﬁzyz
i=1



Dealing with an offset

Wrs,brs = argmin ||y — (Xw + 1b)||5

w,b
XX w16 +brsXT1 =XTy
1" X6 +br5171 =17y
In general, when X1 # 0,

If XT1 =0,
Wrs = (XTX)1xTy b= 1xTq
n n
. 1 - -
bLS:ﬁ;yi X=X-1u

s = (XTX) "' Xy

- 1 <& N
brs = - 2; yi — p WLs
1=



Process

Decide on a model: Yy; = CUZ-T”LU + b+ ¢

Choose a loss function - least squares
Pick the function which minimizes loss on data

n

P . 2
wrs,brs = arg min (yZ — (z]w + b))
w’ .
1=1

Use function to make prediction on new examples

A T A -
ynew — xnewwLS —|_ bLS



Another way of dealing with an offset
Drs,brs = arg min ly — (Xw + 1|5

reparametrize the problem as X = [X, 1] and w = [lg]

Xw =



Why is least squares a good loss function?

Wps = argmin |ly — Xw|[3

_ (XTX)_ley

Consider y; =x] w+¢; where ¢ bLh N(0,0%)

— P(yi;x,w,0) =



Why is least squares a good loss function?

Maximum Likelihood Estimator:

wmLe = argmax log P({yi}io1; {%i}iz1, W, 0)

T2
= argmax —nlog(ov2 +Z Wi — w)




Why is least squares a good loss function?

Maximum Likelihood Estimator:

WMLE = argmax logP({yz i= 17{37% i=1> W, U)

= argmax —nlog(oV2m) + Z

= argmm E —x w)

~ . T 2
Recall: wrs = arg muIJIl g (y@ — X, w)

1=1

Wrs = W LE = (XTX)_leY




Recap of linear regression

Data {(2i, y:) iz

Minimize the loss Maximize the likelihood
(Empirical Risk Minimization) (MLE)
Choose a loss Choose a Hypothesis class
e.g., (y; — x/ w)? eg.y,=xw+e, €~ N0,0%
n
Solve W[ ¢ = arg min Z (y; — xTw)> Maximize the likelihood, e
w i—1 W MLE = arg s { — nlog(c4/27) — Z s 20i2 }

i=1



Analysis of Error under additive Gaussian noise

if y;,=x/w+e and ¢ bk N(0,0?) Y = Xw + €

e = (XTX)"1XTY
= (XIX)7 1 X" (Xw + €)
=w+ (XTX)" ' X"e

Maximum Likelihood Estimator is unbiased:



Analysis of Error under additive Gaussian noise

if y;,=x/w+e and ¢ bk N(0,0?) Y = Xw + €

wyre = (XITX) XY
= (XIX)7 1 X" (Xw + €)
=w+ (XTX) 1 X1e

Covariance is:



Analysis of Error under additive Gaussian noise

if y;=x]w+e and ¢ S N(0,0%) Y = Xw+ €

e = (XTX)"1XTY
= (XIX)7 1 X" (Xw + €)
=w+ (XTX)" ' X"e

EWyggel =w
Cov(Wypp) = E[W — EWD(W — E[W])T] = 62(XTX) !

e ~ A(w, e X'X)™)



Questions?



