Schedule

For those who want to study in advance, a good extra resource of video lectures is here based on the free online text book here

Date Content Reading Slides
Intro, Maximum Likelihood, Linear Regression, Overfitting, Regularization
1/3 M Welcome/overview
Maximum likelihood for Bernoulli
Murphy 1.1 - 1.3, 2.2-2.6, 4.1, 6.4
  Optional: HTF 1, Wasserman 9.1.-9.8
Combined week 1 slides, Lecture 1 slides, ( pre-annotated , live-annotated )
1/5 W Maximum likelihood for Gaussian, Linear least squares Murphy 6.4, 7.1-7.3
  Optional: HTF 3.1-3.2
Lecture 2 slides, ( pre-annotated , live-annotated )
1/7 F Linear least squares Murphy 6.4, 7.1-7.3
  Optional: HTF 3.1-3.2
Lecture 3 slides, ( pre-annotated , live-annotated )
1/10 M Generalized linear regression, Bias-Variance tradeoff
Murphy 6.4, 7.5.1, Fortmann-Roe essay
 Optional: HTF 7.1-7.4
Combined week 2 slides, Lecture 4 slides, ( pre-annotated , live-annotated ), demo2_lin.ipynb demo3_diabetes.ipynb
1/12 W Bias-Variance tradeoff
Murphy 6.4, 7.5.1
 Optional: HTF 7.1-7.4
Lecture 5 slides, ( pre-annotated , live-annotated )
1/14 F Bias-Variance tradeoff and Overfitting Murphy 6.4-6.5
 Optional: HTF 7.1-7.4
Lecture 6 slides, ( pre-annotated , live-annotated ) demo4_tradeoff.html, demo4_tradeoff.ipynb, lecture2_polynomialfit.ipynb
1/17 M Martin Luther King day
1/19 W Ridge regression Murphy 6.4-6.5
 Optional: HTF 7.10-7.12, 3.4
Combined week 3 slides, Lecture 7 slides, ( live-annotated ) demo5_ridge.ipynb , lecture3_ridge.ipynb ,
1/21 F k-fold cross validation Murphy 6.4-6.5,
  Optional: HTF 3
Lecture 8 slides, ( pre-annotated , live-annotated )
1/24 M Lasso Murphy 13.1, 13.3 - 13.4.1
  Optional: HTF 3
Combined week 4 slides, Lecture 9 slides ( live-annotated ) demo_lasso.html , demo_lasso.ipynb ,
Classification, Optimization
1/26 W Convexity Murphy 8.1-8.3, 8.5
Roughgarden-Valiant notes
  Optional: Gradient descent algorithms by Ruder
  Optional: Zen of gradient descent by Moritz Hardt
  Optional: HTF 4.1-4.2, 4.4
Lecture 10 slides (live-annotated )
1/28 F Classification, Logistic Regression Murphy 8.1-8.3, 8.5
  Optional: HTF 4.1-4.2, 4.4
Lecture 11 slides (pre-annotated ,live-annotated ), demo8_classification.ipynb
1/31 M Gradient Descent Daume 4, 11, Murphy 8.5.0
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Combined week 5 slides, Lecture 12 slides (pre-annotated ,live-annotated), demo7_RobustGD.ipynb
2/2 W Stochastic gradient descent Daume 4, 11, Murphy 8.5.0, 8.5.4
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Lecture 13 slides (pre-annotated ,live-annotated)
2/4 F Coordinate descent Daume 4, 11, Murphy 8.5.0, 8.5.4
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Lecture 14 slides (pre-annotated,live-annotated)
2/7 M Support Vector Machine (SVM) Daume 4, 11, Murphy 8.5.0, 8.5.4
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Combined week 6 slides, Lecture 15 slides (pre-annotated,live-annotated)
Non-linear models
2/9 W Kernels Lecture 16 slides (live-annotated)
2/11 F kernels Lecture 17 slides (live-annotated)
2/14 M Bootstrap, Neural Network Murphy 28
  Optional: HTF 11
Dive into Deep Learning, Zhang et al
https://playground.tensorflow.org/
Combined week 7 slides, Lecture 18 slides (live-annotated)
2/16 W Neural Network Murphy 28
  Optional: HTF 11
Dive into Deep Learning, Zhang et al
https://playground.tensorflow.org/
Lecture 19 slides (live-annotated)
2/18 F Neural Network Murphy 28
  Optional: HTF 11
Dive into Deep Learning, Zhang et al
https://playground.tensorflow.org/
Lecture 20 slides (live-annotated)
2/21 M President's day
2/23 W Nearest Neighbor HTF 2-2.5, HTF 6-6.3, EH 10-10.4, EH 11-11.2 Combined week 8 slides, Lecture 21 slides (live-annotated)
Unsupervised Learning
2/25 F Principal Componenet Analysis HTF 2.3-2.5, 7.11, 8.2
Murphy 6.1-6.3, 12.1.0, 12.2
Daume, chapter 15
  Optional: HTF 5.9, 12.3; 14.5
PCA note 1 and notes 2,
Matrix completion paper analyzing gradient descent paper
, Influential paper on deanonymizing netflix challenge using IMDB paper
Lecture 22 slides (live-annotated)
2/28 M PCA and autoencoder Combined week 9 slides, Lecture 23 slides (live-annotated)
3/2 W k-means and Gaussian mixtures HTF 14.3.6-14.3.7
Murphy 11.2-11.4,
k-means ++ paper
Lecture 24 slides (live-annotated)
3/4 F Spectral clistering, Generative Adversarial Networks Lecture 25 slides (live-annotated)
3/7 M Fairness in AI (Guest lecture by Chase King) Lecture 26 slides
3/9 W Generative Adversarial Networks Lecture 27 slides
3/11 F Robust Machine Learning Lecture 28 slides