
Homework #3
CSE 446: Machine Learning

Prof. Sewoong Oh
Due: Friday February 25th, 2022 11:59pm

81 points

Please review all homework guidance posted on the website before submitting to GradeScope. Reminders:

• Make sure to read the “What to Submit” section following each question and include all items.

• Please provide succinct answers and supporting reasoning for each question. Similarly, when discussing
experimental results, concisely create tables and/or figures when appropriate to organize the experimental
results. All explanations, tables, and figures for any particular part of a question must be grouped together.

• For every problem involving generating plots, please include the plots as part of your PDF submission.

• When submitting to Gradescope, please link each question from the homework in Gradescope to the
location of its answer in your homework PDF. Failure to do so may result in deductions of up to [5 points]
. For instructions, see https://www.gradescope.com/get_started#student-submission.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

• Please indicate your final answer to each question by placing a box around the main result(s). To do this
in LATEX, one option is using the boxed command.

• For problems asking you to write some code, please submit code both to Gradescope and embed the
relevant code snippet in your PDF. Failure to embed code in your PDF will result in point deductions.

Not adhering to these reminders may result in point deductions.

Note on Homework Length — This homework may take slightly longer than previous homeworks due to
coding implementations (kernel ridge regression and neural networks). Plan accordingly: please start early
(look over all problems so you can work efficiently), ask questions on Ed, come to office hours, and ask your
TAs/instructor if you need any help!

Changelog:

• 2/22: Fixed the footnote in page 3. ||xi − xj ||2 is fixed to be ||xi − xj ||22

• 2/22: Fixed A2.c wording. The phrase “Show that the minimum squared distance to ...” is now changed
to be “Show that the minimum distance to ...”
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Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] Say you trained an SVM classifier with an RBF kernel (K(u, v) = exp
(
−‖u−v‖2

2

2σ2

)
). It seems to

underfit the training set: should you increase or decrease σ?

b. [2 points] True or False: Training deep neural networks requires minimizing a non-convex loss function,
and therefore gradient descent might not reach the globally-optimal solution.

c. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep neural
network.

d. [2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers so that
the network learns non-linear decision boundaries.

e. [2 points] True or False: Given a neural network, the time complexity of the backward pass step in the
backpropagation algorithm can be prohibitively larger compared to the relatively low time complexity of
the forward pass step.

f. [2 points] True or False: Neural Networks are the most extensible model and therefore the best choice for
any circumstance.

What to Submit:
• Parts a-f: 1-2 sentence explanation containing your answer.

Support Vector Machines

A2. Assume w is an n-dimensional vector and b is a scalar. A hyperplane in Rn is the set
{
x ∈ Rn

∣∣ w>x+ b = 0
}

.

a. [1 point] (n = 2 example) Draw the hyperplane for w =
[
−1 2

]>, b = 2? Label your axes.

b. [1 point] (n = 3 example) Draw the hyperplane for w =
[
1 1 1

]>, b = 0? Label your axes.

c. [2 points] Let w>x + b = 0 be the hyperplane generated by a certain SVM optimization. Given some
point x0 ∈ Rn, Show that the minimum distance to the hyperplane is |x>

0 w+b|
‖w‖2

. In other words, show the
following:

min
x

‖x0 − x‖2 =
|x>

0 w + b|
‖w‖2

subject to: w>x+ b = 0 .

Hint: Think about projecting x0 onto the hyperplane.

What to Submit:

• Parts a-b: Graph or image of hyperplane

• Part c: Solution and corresponding calculations
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Kernels and Bootstrap

A3. [5 points] Suppose that our inputs x are one-dimensional and that our feature map is infinite-dimensional:
φ(x) is a vector whose ith component is:

1√
i!
e−x2/2xi ,

for all nonnegative integers i. (Thus, φ is an infinite-dimensional vector.) Show that K(x, x′) = e−
(x−x′)2

2 is a
kernel function for this feature map, i.e.,

φ(x) · φ(x′) = e−
(x−x′)2

2 .

Hint: Use the Taylor expansion of z 7→ ez. (This is the one dimensional version of the Gaussian (RBF) kernel).

What to Submit:
• Proof.

A4. This problem will get you familiar with kernel ridge regression using the polynomial and RBF kernels.
First, let’s generate some data. Let n = 30 and f∗(x) = 4 sin(πx) cos(6πx2). For i = 1, . . . , n let each xi be
drawn uniformly at random from [0, 1], and let yi = f∗(xi)+ εi where εi ∼ N (0, 1). For any function f , the true
error and the train error are respectively defined as:

Etrue(f) = EX,Y

[
(f(X)− Y )2

]
, Êtrain(f) =

1

n

n∑
i=1

(f(xi)− yi)
2
.

Now, our goal is, using kernel ridge regression, to construct a predictor:

α̂ = argmin
α

‖Kα− y‖22 + λα>Kα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where K ∈ Rn×n is the kernel matrix such that Ki,j = k(xi, xj), and λ ≥ 0 is the regularization constant.

a. [10 points] Using leave-one-out cross validation, find a good λ and hyperparameter settings for the following
kernels:

• kpoly(x, z) = (1 + x>z)d where d ∈ N is a hyperparameter,

• krbf(x, z) = exp(−γ‖x− z‖22) where γ > 0 is a hyperparameter1.

We strongly recommend implementing either grid search or random search. Do not use sklearn, but
actually implement of these algorithms. Reasonable values to look through in this problem are: λ ∈
10[−5,−1], d ∈ [5, 25], γ sampled from a narrow gaussian distribution centered at value described in the
footnote.
Report the values of d, γ, and the λ values for both kernels.

b. [10 points] Let f̂poly(x) and f̂rbf(x) be the functions learned using the hyperparameters you found in part
a. For a single plot per function f̂ ∈

{
f̂poly(x), f̂rbf(x)

}
, plot the original data {(xi, yi)}ni=1, the true f(x),

and f̂(x) (i.e., define a fine grid on [0, 1] to plot the functions).

c. [5 points] We wish to build bootstrap percentile confidence intervals for f̂poly(x) and f̂rbf(x) for all x ∈ [0, 1]
from part b.2 Use the non-parametric bootstrap with B = 300 bootstrap iterations to find 5% and 95%
percentiles at each point x on a fine grid over [0, 1].

1Given a dataset x1, . . . , xn ∈ Rd, a heuristic for choosing a range of γ in the right ballpark is the inverse of the median of all(n
2

)
squared distances ‖xi − xj‖22.

2See Hastie, Tibshirani, Friedman Ch. 8.2 for a review of the bootstrap procedure.
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Specifically, for each bootstrap sample b ∈ {1, . . . , B}, draw uniformly at randomly with replacement, n
samples from {(xi, yi)}ni=1, train an f̂b using the b-th resampled dataset, compute f̂b(x) for each x in your
fine grid; let the 5% percentile at point x be the largest value ν such that 1

B

∑B
b=1 1{f̂b(x) ≤ ν} ≤ .05,

define the 95% percentile analogously.

Plot the 5 and 95 percentile curves on the plots from part b.

d. [5 points] Repeat parts a, b, and c with n = 300, but use 10-fold CV instead of leave-one-out for part a.

e. [5 points] For this problem, use the f̂poly(x) and f̂rbf(x) learned in part d. Suppose m = 1000 additional
samples (x′

1, y
′
1), . . . , (x

′
m, y′m) are drawn i.i.d. the same way the first n samples were drawn.

Use the non-parametric bootstrap with B = 300 to construct a confidence interval on

E
[(

Y − f̂poly(X)
)2

−
(
Y − f̂rbf(X)

)2
]

(i.e. randomly draw with replacement m samples denoted as {(x̃′
i, ỹ

′
i)}mi=1 from {(x′

i, y
′
i)}mi=1 and com-

pute 1
m

m∑
i=1

[(
ỹ′i − f̂poly(x̃

′
i)
)2

−
(
ỹ′i − f̂rbf(x̃

′
i)
)2

]
, repeat this B times) and find 5% and 95% percentiles.

Report these values.

Using this confidence interval, is there statistically significant evidence to suggest that one of f̂rbf and
f̂poly is better than the other at predicting Y from X? (Hint: does the confidence interval contain 0?)

What to Submit:
• Part a: Report the values of d, γ and the value of λ for both kernels as described.

• Part b: Two plots. One plot for each function.

• Part c: Two plots. One plot for the 5 and 95 percentile curves of each plot in part b.

• Part d: Values of d, γ, and the value of λ for both kernels as described. In addition, provide two separate
plots as you did for part b. then two more plots as you did for part c.

• Part e: Report the 5% and 95% percentiles. In addition, in 1-2 sentences, comment on if there is
statistically significant evidence to suggest that one kernel performs better than the other.

• Code on Gradescope through coding submission and also embed your code in the PDF submission.

Introduction to PyTorch

A5. PyTorch is a great tool for developing, deploying and researching neural networks and other gradient-
based algorithms. In this problem we will explore how this package is built, and re-implement some of its core
components. Firstly start by reading README.md file provided in intro_pytorch subfolder. A lot of problem
statements will overlap between here, readme’s and comments in functions.

a. [10 points] You will start by implementing components of our own PyTorch modules. You can find these
in folders: layers, losses and optimizers. Almost each file there should contain at least one problem
function, including exact directions for what to achieve in this problem. Lastly, you should implement
functions in train.py file.

b. [5 points] Next we will use the above module to perform hyperparameter search. Here we will also treat
loss function as a hyper-parameter. However, because cross-entropy and MSE require different shapes we
are going to use two different files: crossentropy_search.py and mean_squared_error_search.py. For
each you will need to build and train (in provided order) 5 models:

• Linear neural network (Single layer, no activation function)
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• NN with one hidden layer (2 units) and sigmoid activation function after the hidden layer
• NN with one hidden layer (2 units) and ReLU activation function after the hidden layer
• NN with two hidden layer (each with 2 units) and Sigmoid, ReLU activation functions after first and

second hidden layers, respectively
• NN with two hidden layer (each with 2 units) and ReLU, Sigmoid activation functions after first and

second hidden layers, respectively

For each loss function, submit a plot of losses from training and validation sets. All models should be on
the same plot (10 lines per plot), with two plots total (1 for MSE, 1 for cross-entropy).

c. [5 points] For each loss function, report the best performing architecture (best performing is defined here
as achieving the lowest validation loss at any point during the training), and plot its guesses on test set.
You should use function plot_model_guesses from train.py file. Lastly, report accuracy of that model
on a test set.

d. [3 points] Is there a big gap in performance between between MSE and Cross-Entropy models? If so,
explain why it occurred? If not explain why different loss functions achieve similar performance? Answer
in 2-4 sentences.

On Softmax function

One of the activation functions we ask you to implement is softmax. For a prediction ŷ ∈ Rk corresponding to
single datapoint (in a problem with k classes):

softmax(ŷi) =
exp(ŷi)∑
j exp(ŷj)

What to Submit:

• Part b: 2 plots (one per loss function), with 10 lines each, showing both training and validation loss of
each model. Make sure plots are titled, and have proper legends.

• Part c: Names of best performing models (i.e. descriptions of their architectures), and their accuracy on
test set.

• Part c: 2 scatter plots (one per loss function), with predictions of best performing models on test set.

• Part d: 2-4 sentence written reponse to provided questions.

• Code on Gradescope through coding submission and also embed your code in the PDF submission.

Administrative

A6.

a. [2 points] About how many hours did you spend on this homework? There is no right or wrong answer :)
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