
Section 08: Solutions

1. The Chain Rule

(a) Let f : Rn → Rm, g : R` → Rn. Write the Jacobian of f ◦ g as a matrix in terms of the Jacobian matrix ∂f
∂y of

f and the Jacobian matrix ∂g
∂x of g. Make sure the matrix dimensions line up. What conditions must hold in

order for this formula to make sense?

Solution:

The Chain Rule theorem states that:

∂(f ◦ g)
∂x

(x) =
∂f

∂y

(
g(x)

)
· ∂g
∂x

(
x
)

In order for the dimensions to line up for matrix multiplication, we must have ∂f
∂y ∈ Rm×n and ∂g

∂x ∈ Rn×`,
since f ◦ g : R` → Rm. Note that by this convention, the gradient of a vector-valued function is:

∂f

∂y
(y) =


∂f1
∂y1

(y) · · · ∂f1
∂yn

(y)
...

...
∂fm
∂y1

(y) · · · ∂fm
∂yn

(y)

 .

In order to apply the chain rule, f must be differentiable at g(x) and g must be differentiable at x.

(b) Let f : Rn → R and g : R → Rn. Write the derivative of f ◦ g as a summation between the partial derivatives
∂f
∂yi

of f and the partial derivatives ∂gi
∂x of g.

Solution:

∂f ◦ g
∂x

=

n∑
i=1

∂f

∂yi
(g(x)) · ∂gi

∂x
(x).

(c) What if instead the input of g is a matrixW ∈ Rp×q? Can we still represent the derivative ∂g
∂W of g as a matrix?

Solution:

No, we cannot. The derivative of g : Rp×q → Rn would be represented as a three-dimensional n × p × q
tensor. In practice, people often flatten the input matrix W to a vector vec(W ) ∈ Rpq. Then we can write
the derivative of g as a Jacobian matrix, ∂g

∂ vec(W ) ∈ Rn×pq. Then we must remember to un-flatten the
derivative later when we update the matrix W .

2. Neural Network Chain Rule Warm-Up

Consider the following equations:

v(a, b, c) = c(a− b)2

a(w, x, y) = (w + x+ y)2

b(x, y, z) = (x− y − z)2

The way variables are related to each other can be represented as the network:

1



(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the
input variables: c, w, x, y, z using only partial derivative symbols.

Solution:

∂v

∂c
=

∂v

∂c
∂v

∂w
=

∂v

∂a
· ∂a
∂w

∂v

∂x
=

∂v

∂a
· ∂a
∂x

+
∂v

∂b
· ∂b
∂x

∂v

∂y
=

∂v

∂a
· ∂a
∂y

+
∂v

∂b
· ∂b
∂y

∂v

∂z
=

∂v

∂b
· ∂b
∂z

(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then
use them to compute the values on the LHS.

Solution:

2



∂v

∂a
= 2c(a− b)

∂v

∂b
= −2c(a− b)

∂v

∂c
= (a− b)2

∂a

∂w
= 2(w + x+ y)

∂a

∂x
= 2(w + x+ y)

∂a

∂y
= 2(w + x+ y)

∂b

∂x
= 2(x− y − z)

∂b

∂y
= −2(x− y − z)

∂b

∂z
= −2(x− y − z)

∂v

∂c
= (a− b)2

∂v

∂w
=

∂v

∂a
· ∂a
∂w

= 4c(a− b)(w + x+ y)

∂v

∂x
=

∂v

∂a
· ∂a
∂x

+
∂v

∂b
· ∂b
∂x

= 4c(a− b)(w + x+ y) · −4c(a− b)(x− y − z) = 4c(a− b)(w + 2y + z)

∂v

∂y
=

∂v

∂a
· ∂a
∂y

+
∂v

∂b
· ∂b
∂y

= 4c(a− b)(w + x+ y) · 4c(a− b)(x− y − z) = 4c(a− b)(w + 2x− z)

∂v

∂z
=

∂v

∂b
· ∂b
∂z

= 4c(a− b)(x− y − z)

3. 1-Hidden-Layer Neural Network Gradients and Initialization

3.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the
parameters W (0) ∈ Rh×d, b(0) ∈ Rh; W (1) ∈ R1×h and b(1) ∈ R. The input is given by x ∈ Rd. We will use sigmoid
activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural
network with d = 2 and h = 4.

(a) Write out the forward pass for the network using x,W (0), b(0), z,W (1), b(1), σ and y.

3



Hint: Write z = . . . and y = . . .

Solution:

z = σ
(
W (0)x+ b(0)

)
y = W (1)z + b(1)

(b) Find the partial derivatives of the output with respect W (1) and b(1), namely ∂y
∂W (1) and ∂y

∂b(1)
.

Solution:

∂y

∂W (1)
= z

∂y

∂b(1)
= 1

(c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is ∂y
∂z

Solution:

∂y

∂z
= W (1)

(d) Finally find the partial derivatives of the output with respect to W (0) and b(0), that is ∂y
∂W (0) and ∂y

∂b(0)
.

Hint: First find ∂zi
∂W

(0)
i

and ∂zi
∂b

(0)
i

, whereW (0)
i denotes the i-th row ofW (0). Then note that ∂y

∂W
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂W
(0)
i

=

∂y
∂zi

∂zi
∂W

(0)
i

and ∂y

∂b
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂b
(0)
i

= ∂y
∂zi

∂zi
∂b

(0)
i

using the chain rule for multi-variate functions(1.b).

Solution:

∂zi

∂W
(0)
i

= zi(1− zi)x
> ∈ Rd

∂y

∂W
(0)
i

=
∂y

∂zi

∂zi

∂W
(0)
i

= W
(1)
i · zi(1− zi)x

> ∈ Rd

∂y

∂W (0)
=

[
W (1)> ◦ z ◦ (1− z)

]
x> ∈ Rh×d ,

∂zi

∂b
(0)
i

= zi(1− zi) ∈ R

∂y

∂b
(0)
i

=
∂y

∂zi

∂zi

∂b
(0)
i

= W
(1)
i · zi(1− zi) ∈ R

∂y

∂b(0)
= W (1)> ◦ z ◦ (1− z) ∈ Rh.

We have provided the shapes of the matrix representations of derivatives. Try to reason about why it is of
the given shape.

4



3.2. Weight initialization

Suppose we initialize all weights and biases in the network to 0 before performing gradient descent.

(a) For all x ∈ Rd, find z and y after the forward pass.

Solution:

zi = σ(W
(0)
i x+ b(0)i) = σ(0x+ 0) = σ(0) =

1

2

y = W (1)z + b(1) = 0 · 1
2
+ 0 = 0

(b) Now find the values of the gradients ∂y
∂W (1) ,

∂y
∂b(1)

, ∂y
∂W (0) and ∂y

∂b(0)
. Note that some of the gradients will be in

terms of x.

Solution:

∂y

∂W (1)
= z =

1
2

∂y

∂b(1)
= 1

∂y

∂W (0)
=

[
W (1) ◦ z ◦ (1− z)

]
x>

= (0 ◦ 1
2
◦ 1

2
)x> = 0

∂y

∂b(0)
= W (1) ◦ z ◦ (1− z)

= 0 ◦ 1
2
◦ 1

2
= 0 .

(c) Observe the values of each zi and observe each ∂y

∂W
(l)
i

and ∂y

∂b
(l)
i

. What do you notice? And what does this

imply for the expressiveness of the network? (Note that there is nothing special about the value 0 here, it just
simplifies the calculations. The same can be shown for initialization with any constant c)

Solution:

The key insight is that if we initialize the weights to all have the same value, all zi are the same. Similarly
all W (l)

i and b
(l)
i are the same too and so the output y could be expressed with just a single zi instead

of h. Thus the neural network boils down to just having a single hidden unit. The same holds for the
gradients, so during a step of gradient descent, W (l)

i and b
(l)
i are updated in the same way. Thus after a

step of gradient descent, allW (l)
i and b

(l)
i are still the same. By induction, the same holds after an arbitrary

number of steps of gradient descent.

5


	The Chain Rule
	Neural Network Chain Rule Warm-Up
	1-Hidden-Layer Neural Network Gradients and Initialization
	Forward and Backward pass
	Weight initialization


