Section 08: Solutions

1. The Chain Rule

(a) Let f: R® — R™, g: R* — R™. Write the Jacobian of f o ¢ as a matrix in terms of the Jacobian matrix af of

f and the Jacobian matrix 89 of g. Make sure the matrix dimensions line up. What conditions must hold in
order for this formula to make sense?

Solution:

The Chain Rule theorem states that:

M09 @)= % (o) 2 w)

In order for the dimensions to line up for matrix multiplication, we must have af € R™*"™ and 89 € R™*¢,
since f o g: RY — R™. Note that by this convention, the gradient of a vector-valued function is:

af( ) ayl.(y) ayn.(y)
ay . .
B )

In order to apply the chain rule, f must be differentiable at g(z) and g must be differentiable at z.

(b) Let f: R™ — R and g : R — R™. Write the derivative of f o g as a summation between the partial derivatives

g L of f and the partial derivatives 5‘91 of g.

Solution:

(c) What if instead the input of ¢ is a matrix W € RP*9? Can we still represent the derlvatlve i+ of g as a matrix?

Solution:

No, we cannot. The derivative of g: R?*? — R™ would be represented as a three-dimensional n x p X ¢
tensor. In practice, people often flatten the input matrix W to a vector vec(W) € RP4. Then we can write
the derivative of ¢ as a Jacobian matrix, %‘(Jw) € R™*P4, Then we must remember to un-flatten the

derivative later when we update the matrix W.

2. Neural Network Chain Rule Warm-Up

Consider the following equations:
v(a,b,c) = cla — b)?
a(w, ,y) = (w +x +y)?
b(z,y,2) = (x —y —2)°

The way variables are related to each other can be represented as the network:



(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the
input variables: ¢, w, x,y, z using only partial derivative symbols.

Solution:
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(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then
use them to compute the values on the LHS.

Solution:
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de(a —b)(w+z+y) - —4c(a —b)(x —y — 2) = 4c(a — b)(w + 2y + 2)

3. 1-Hidden-Layer Neural Network Gradients and Initialization

3.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the
parameters W(®) ¢ R"*4 p(0) ¢ R W) ¢ R1*" and (1) € R. The input is given by = € R?. We will use sigmoid
activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural
network with d = 2 and h = 4.
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(a) Write out the forward pass for the network using =, W(© 5©) » W® p(1) & and y.



(b)

(@]

(d

Hint: Write z = ... andy = ...

Solution:

z=0 (W(O)x + b(o))

y = W5 4 p0)

Find the partial derivatives of the output with respect W) and b(*), namely 2% and -2%;.

Solution:
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Now find the partial derivative of the output with respect to the output of the hidden layer z, that is %g

Solution:
dy
A 74V
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Finally find the partial derivatives of the output with respect to W (% and »(?), that is aW<0J and 62(0)
0z; (0) . (0) 9y _x~h 9y 0z
Hint: First flnd Wi and % (0> , where W, denotes the i-th row of W°). Then note that Y =" | ZL —Z/ —
2 i oW, j=1 0z oW}
gz 83;"30) and ab“’) = Z?Zl gjj ;jjg) = g—i 82‘;’3) using the chain rule for multi-variate functions(1.b).
Solution:
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We have provided the shapes of the matrix representations of derivatives. Try to reason about why it is of
the given shape.




3.2. Weight initialization
Suppose we initialize all weights and biases in the network to 0 before performing gradient descent.

(a) Forall z € RY, find z and y after the forward pass.

Solution:
W% + @) = 5(0z +0) = 0(0) = =
y=WWz4V =0.-40=
(b) Now flnfd the values of the gradients aW<1> , 3‘2(1) s av?/(o) and 3b(0) Note that some of the gradients will be in
terms of z.
Solution:
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(c) Observe the values of each z; and observe each W“’ and What do you notice? And what does this

ab (l)
imply for the expressiveness of the network? (Note that there is nothing special about the value 0 here, it just
simplifies the calculations. The same can be shown for initialization with any constant c)

Solution:

The key insight is that if we initialize the weights to all have the same value, all z; are the same. Similarly

all Wi(l) and bgl) are the same too and so the output y could be expressed with just a single z; instead
of h. Thus the neural network boils down to just having a single hidden unit. The same holds for the

gradients, so during a step of gradient descent, Wi(l) and bgl) are updated in the same way. Thus after a
step of gradient descent, all Wi(l) and bgl) are still the same. By induction, the same holds after an arbitrary
number of steps of gradient descent.
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