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Lecture 7:
LASSO for sparse regression
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Sparsity @irs = argminy  (y; — 27 w)’

1=1

= Vector w is sparse, if many entries are zero
WS sparse,

A vector w is said to be k-sparse if at most k entries are
non-zero

We are interested in k-sparse w with k <<@7
Why do we prefer sparse vector w in practice?



SparSity ’&}LS = arg mlnz (yz — x?w)2
1=1 0/
. Vector w is sparse, if many entries are zero EW — o//

- Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w
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Computational complexity decreases from 2d to 2k for k-sparse W



Sparsity

n
wrs = arg muﬁﬂz (s — ;
1=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?
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Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling
[Heating |
Exterior materials
Roof type

Structure style

How do we find “best” subset of
features useful in predicting the
price among all possible
combinations?
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Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System



Finding best subset of features that
explain the outcome/label: Exhaustive

/

 Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error

. Problem? 27 posnbl  ribeeds
* Any ldeas?
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Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Forward Greedy
2:Forj=1,...,kdo

n 2
3: Jj* « arg min min Z(yl-— Z w[j])(x,-[j])
w7 - .
- = =] JEBu{Z}

4 T <Tu{j*)

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as important

L ots of other variants, too.



Finding best subset: Reqgularize

Recall that Ridge regression makes coefficients small

n

~ . 2

Wridge — al'g mu%nz (yz - CE?U)) + ‘%\deH%
1=1
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Thresholded Ridge Regression
{U\ridge — arg mu%nz (yz - $?w>2 + )\Hw|é

- Why don’t we just set small ridge coefficients to 0?
* Any issues?
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Thresholded Ridge Regression

riage = argmin ¥ (yi — 7 w)” + A[w] |
=1
- Consider two related features (bathrooms, showers) "
. Consider w[bath] = 1 and w[shower]| = 1, and A (0] ) T2
w[bath] = 2 and w[shower] = 0, 2-(2°+0) = 40
which one does ridge regression choose?
(assuming #bathroom=#showers in every house)
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Ridge vs. Lasso Regression

* Recall Ridge Regression objective:

~ . 2
Wridge = arg mlinz (yz — xZTw) + M|w||3
i=1
. sensitivity of a model w is measured in squared £, norm ||w||3

* A principled method to get sparse model is Lasso with
regularized objective:

2
Wigsso = arg mmz —z;w) + Nwlk
=1

- sensitivity of a model w is measured in £; norm:

”W”l = ‘W[]] ‘ fp—normofavectorweRdis

j=1 Iwll, Z wijlP) 2




Example{:zlb;}ouse price with 16 features
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1. Model selection: choose A based on cross validation error

2. Feature selection: keep only those features with non-zero
(or not-too-small) parameters in w at optimal A

3. Retrain with the sparse modeland 4 = 0



Example: piecewise-linear fit
I’LQ(LU) =1
 We use Lasso on the piece-wise linear example hi(z) = [z+1.1—0.14"

Step 1: find optimal A* Step 3: retrain
minimizew A (W) + ﬂ”W”l minimize,, Z£(w)
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Step 2: select features
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* de-biasing (via re-training) is criticall but only use selected features




Penalized Least Squares

e Regularized optlmlzatlon
2
= arg min E i — i w) (FAr(w) g

Ridge : r(w) = HwH@
Lasso : r(w) = ||w||p X

e For any A* > 0O for which w, achieves the minimum, there exists a u* > 0 such that

the solution of the constrained optimization, WC, is the same as the solution of the

?/w/é c
—_ 2 .

Wc—argnéljnz,(yl X' w) subject to r(w) g@

=1

regularized optimization, W , where

e so there are pairs of (4, ) whose optimal solution 717,, are the same
for the regularizes optimization and constrained optimization




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

« the level set of a function £ (w, w,) is defined

as the set of points (w;, w,) that have the same
function value

» the level set of a quadratic function is an oval
e the center of the oval is the least squares

. A N w2
solution w,_, = Wy g 4 .
1-D example with quadratic loss W<
L (wy)
1

»
L

| |
a b wi
Level set of £ (w;) at value 1 is {a,b}




Why does Lasso give sparse solutions?

n
minimize,, Y (w'x; — )

i=1

subject to

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
Ll ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond Vﬁ‘;z
{(Wl,Wz)‘ (Wil + 1wy | <}

« when y is large enough such that [[Ww, - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| ||w|, < u} —>



Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

e As u decreases (which is equivalent to
increasing regularization A) the feasible
set (blue diamond) shrinks

* The optimal solution of the above e @
optimization is ? @

feasible set: {w € R?| Wil Lu}——>




Why does Lasso give sparse solutions?

n
minimize,, Y (w'x; — )

i=1
subject to zllwlll S@/

For small enough 1, the optimal solution
becomes sparse

This is because the L-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

(~Cpame -~ g

feasible set: {w € R?| ||w||, < u} —>




Penalized Least Squares

e Lasso regression finds sparse solutions, as L-ball is “pointy”

» Ridge regression finds dense solutions, as L,-ball is “smooth”

n n
minimize,, Z wlx; —y)? minimize,, Z wlx, —y)?
subject to ||w|l, < u subject to ||w||§ < u
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