Ridge regression
$$\sum_{i=1}^{n} (y_i - w^T x_i)^2 + 2 \|w\|_0^2$$

Lecture 7: LASSO for sparse regression

$$||w||_1 = \sum_{i=1}^{d} |w_i|$$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - A vector w is said to be k-sparse if at most k entries are non-zero
 - We are interested in \underline{k} -sparse w with $k \ll d$
 - Why do we prefer sparse vector w in practice?

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Vector w is sparse, if many entries are zero

- $\in \mathbb{R}^d \to \mathcal{O}(d)$
- **Efficiency**: If size(w) = 100 Billion, each prediction w^Tx is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w

$$\widehat{y}_{i} = \widehat{w}_{LS}^{T} x_{i}$$

$$= \underbrace{\widehat{w}_{LS}^{T} x_{i}}_{I}$$

$$= \underbrace{\sum_{j=1}^{A} \widehat{w}_{LS}[j] \times x_{i}[j]}_{LS} = \underbrace{\sum_{j:w_{LS}[j] \neq 0}}_{j:w_{LS}[j] \neq 0} \widehat{w}_{LS}[j] \times x_{i}[j]$$

Computational complexity decreases from 2d to 2k for k-sparse $\widehat{w}_{\mathrm{LS}}$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size

Single Family

Year built

Last sold price

Last sale price/sqft

Finished sqft Unfinished sqft

Finished basement saft

floors

Flooring types

Parking type
Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

Finding best subset of features that explain the outcome/label: Exhaustive

- Try all subsets of size 1, 2, 3, ... and one that minimizes validation error
 - Problem? 2 possible subsets
 - Any Ideas?

-) too expensive

$$d = 100$$
 $2 = 10^{10}$

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Forward Greedy

1:
$$\underline{T} \leftarrow \underline{\varnothing} = \{\}$$

2: For
$$j = 1,...,k$$
 do

3:
$$j^* \leftarrow \arg\min_{\ell} \min_{\underline{w}} \sum_{i=1}^n \left(y_i - \sum_{j \in I \cup \{\ell\}} w[j] \times x_i[j] \right)^2$$

4:
$$T \leftarrow T \cup \{\underline{j^*}\}$$

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Finding best subset: Regularize

Recall that Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \underline{\lambda} ||w||_2^2$$

$$w_i$$
's

Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_{\mathcal{Z}}^2$$

- Why don't we just set small ridge coefficients to 0?
 - Any issues?

Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

 $9 \cdot (l^2 + l^2) = 22$

 $2 \cdot (2^2 + 0^2) = 42$

- Consider two related features (bathrooms, showers)
- Consider w[bath] = 1 and w[shower] = 1, and w[bath] = 2 and w[shower] = 0, which one does ridge regression choose?

(assuming #bathroom=#showers in every house)

bedrooms ons living ft. lot floors built valed price sq.ft. heating waterfront year renovated cost per sq.ft. heating waterfront

Ridge vs. Lasso Regression

Recall Ridge Regression objective:

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_{2}^{2}$$

- sensitivity of a model w is measured in squared ℓ_2 norm $\|w\|_2^2$
- A principled method to get sparse model is <u>Lasso</u> with regularized objective:

$$\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{T} (y_i - x_i^T w)^2 + \lambda ||w||_{\mathbb{D}}$$

• sensitivity of a model w is measured in \mathcal{L}_1 norm:

$$||w||_1 = \sum_{j=1}^d |w[j]|$$

$$\mathcal{C}_p$$
-norm of a vector $w \in \mathbb{R}^d$ is
$$\|w\|_p \triangleq \Big(\sum_{j=1}^d \underline{|w[j]|^p}\Big)^{1/p}$$

Example: house price with 16 features

ullet Regularization path for Lasso shows that weights drop to exactly zero as λ increases

Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. **Model selection**: choose λ based on cross validation error
 - 2. **Feature selection**: keep only those features with non-zero (or not-too-small) parameters in w at optimal λ
 - 3. Retrain with the sparse model and $\lambda = 0$

Example: piecewise-linear fit

We use Lasso on the piece-wise linear example

$$h_0(x) = 1$$

 $h_i(x) = [x + 1.1 - 0.1i]^+$

de-biasing (via re-training) is critical!

Step 3: retrain minimize $\mathscr{L}(w)$

but only use selected features

Penalized Least Squares

Regularized optimization:

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)$$

$$\text{Ridge}: r(w) = ||w||_{\mathcal{D}}^2$$

$$\text{Lasso}: r(w) = ||w||_{\mathcal{D}}$$

• For any $\lambda^* \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu^* \geq 0$ such that the solution of the constrained optimization, \widehat{w}_c , is the same as the solution of the regularized optimization, \widehat{w}_r , where

$$\widehat{w}_C = \arg\min_{\widehat{w}} \sum_{i=1}^n (y_i - x_i^T w)^2$$
 subject to $\underline{r(w)} \leq \widehat{\mu}^*$

• so there are pairs of (λ, μ) whose optimal solution \widehat{w}_r are the same for the regularizes optimization and constrained optimization

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- the **level set** of a function $\mathcal{L}(w_1, w_2)$ is defined as the set of points (w_1, w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{u=\infty} = \hat{w}_{\mathrm{LS}}$

1-D example with quadratic loss

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to
$$\|w\|_{1} \leq \mu$$

- as we decrease μ from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{(w_1,w_2)\,\middle|\, |w_1|+|w_2|\leq \mu\right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \underline{\mu}\}$

$$\text{minimize}_{w} \quad \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

• As μ decreases (which is equivalent to increasing regularization λ) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is ?

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$ —

minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
 subject to
$$\|w\|_{1} \leq \widehat{\mu}$$

- For small enough μ , the optimal solution becomes **sparse**
- This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

Penalized Least Squares

- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- ullet Ridge regression finds dense solutions, as L_2 -ball is "smooth"

 $\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

subject to $||w||_1 \le \mu$

$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_2^2 \le \mu$$

