
Homework #4

CSE 446: Machine Learning

Prof. Byron Boots

Due: Friday 03/19/2021 11:59 PM — NO LATE DAYS ALLOWED

Please review all homework guidance posted on the website before submitting to Gradescope.

• Turning in this homework late will result in a ZERO for the assignment. We have made the deadline as
late as possible given when we must report grades to the university. Please plan to finish early.

• Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted
if long answers demonstrate a lack of clarity. Similarly, when discussing the experimental results, concisely
create tables and/or figures when appropriate to organize the experimental results. In other words, all
your explanations, tables, and figures for any particular part of a question must be grouped together.

• When submitting to gradescope, please link each question from the homework in gradescope to the location
of its answer in your homework PDF. Failure to do so may result in point deductions. For instructions,
see https://www.gradescope.com/get_started#student-submission.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

For the below problems, 1 through 5 are required. You may choose only one BLUE problem from {6, 7}
to complete (please do not turn in both).

Conceptual Questions

1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] True or False: Given a data matrixX ∈ Rn×d where d is much smaller than n and k = rank(X), if
we project our data onto a k dimensional subspace using PCA, our projection will have zero reconstruction
error (in other words, we find a perfect representation of our data, with no information loss).

b. [2 points] True or False: Suppose that an n× n matrix X has a singular value decomposition of USV >,
where S is a diagonal n× n matrix. Then, the rows of V are equal to the eigenvectors of X>X.

c. [2 points] True or False: choosing k to minimize the k-means objective (see Equation (1) below) is a good
way to find meaningful clusters.

d. [2 points] True or False: The singular value decomposition of a matrix is unique.

e. [2 points] True or False: The rank of a square matrix equals the number of its nonzero eigenvalues.

f. [2 points] True or False: Autoencoders, where the encoder and decoder functions are both neural networks
with nonlinear activations, can capture more variance of the data in its encoded representation than PCA
using the same number of dimensions.
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Basics of SVD

2. Given X ∈ Rm×n, recall that its Singular Value Decomposition (SVD) gives us a factorization of a matrix
X = UΣV > such that U ∈ Rm×m, V > ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix
representing the singular values of X. Show the following.

a. [3 points] Let ŵ be the solution to the regression problem minw ‖Xw− y‖22. Let ŵR be the solution to the
ridge regression problem minw ‖Xw− y‖22 +λ‖w‖22. Let X = UΣV > be a singular value decomposition of
X. Using this decomposition, explain why the solution ŵR to the ridge regression problem “shrinks” as
compared to the solution ŵ of the standard regression problem.

b. [3 points] Let U ∈ Rn×n be a matrix with singular values all equal to one. Show that UU> = U>U = I.

c. [3 points] Now use the above result to show that U preserves Euclidean norms. In other words, ‖Ux‖2 =
‖x‖2 for any x ∈ Rn.

k-means clustering

3. Given a dataset x1, ...,xn ∈ Rd and an integer 1 ≤ k ≤ n, recall the following k-means objective function

min
π1,...,πk

k∑
i=1

∑
j∈πi

‖xj − µi‖22 , µi =
1

|πi|
∑
j∈πi

xj . (1)

Above, {πi}ki=1 is a partition of {1, 2, ..., n}. The objective (1) is NP-hard1 to find a global minimizer of.
Nevertheless the commonly-used algorithm we discussed in lecture (Lloyd’s algorithm), typically works well in
practice.

a. [5 points] Implement Lloyd’s algorithm for solving the k-means objective (1). Do not use any off-the-shelf
implementations, such as those found in scikit-learn. Include your code in your submission.

b. [5 points] Run the algorithm on the training dataset of MNIST with k = 10, plotting the objective function
(1) as a function of the iteration number. Visualize (and include in your report) the cluster centers as a
28× 28 image.

c. [5 points] For k = {2, 4, 8, 16, 32, 64} run the algorithm on the training dataset to obtain centers {µi}ki=1.
If {(xi, yi)}ni=1 and {(x′i, y′i)}mi=1 denote the training and test sets, respectively, plot the training error
1
n

∑n
i=1 minj=1,...,k ‖µj −xi‖22 and test error 1

m

∑m
i=1 minj=1,...,k ‖µj −x′i‖22 as a function of k on the same

plot.

PCA

4. Let’s do PCA on MNIST dataset and reconstruct the digits in the dimensionality-reduced PCA basis. You
will actually compute your PCA basis using the training dataset only, and evaluate the quality of the basis on
the test set, similar to the k-means reconstructions of above. We have ntrain = 50, 000 training examples of size
28 × 28. Begin by flattening each example to a vector to obtain Xtrain ∈ R50,000×d and Xtest ∈ R10,000×d for
d := 784.

Let µ ∈ Rd denote the average of the training examples in Xtrain, i.e., µ = 1
ntrain

X>train1>. Now let Σ =

(Xtrain − 1µ>)>(Xtrain − 1µ>)/50000 denote the sample covariance matrix of the training examples, and let
Σ = UDUT denote the eigenvalue decomposition of Σ.

1To be more precise, it is both NP-hard in d when k = 2 and k when d = 2. See the references on the wikipedia page for k-means
for more details.
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a. [2 points] If λi denotes the ith largest eigenvalue of Σ, what are the eigenvalues λ1, λ2, λ10, λ30, and λ50?

What is the sum of eigenvalues
∑d
i=1 λi?

b. [5 points] Let x ∈ Rd and k ∈ 1, 2, . . . , d. Write a formula for the rank-k PCA approximation of x.

c. [5 points] Using this approximation, plot the reconstruction error from k = 1 to 100 (the X-axis is k and
the Y -axis is the mean-squared error reconstruction error) on the training set and the test set (using the

µ and the basis learned from the training set). On a separate plot, plot 1−
∑k

i=1 λi∑d
i=1 λi

from k = 1 to 100.

d. [3 points] Now let us get a sense of what the top PCA directions are capturing. Display the first 10
eigenvectors as images, and provide a brief interpretation of what you think they capture.

e. [3 points] Finally, visualize a set of reconstructed digits from the training set for different values of k. In
particular provide the reconstructions for digits 2, 6, 7 with values k = 5, 15, 40, 100 (just choose an image
from each digit arbitrarily). Show the original image side-by-side with its reconstruction. Provide a brief
interpretation, in terms of your perceptions of the quality of these reconstructions and the dimensionality
you used.

Unsupervised Learning with Autoencoders

5. In this exercise, we will train two simple autoencoders to perform dimensionality reduction on MNIST.
As discussed in lecture, autoencoders are a long-studied neural network architecture comprised of an encoder
component to summarize the latent features of input data and a decoder component to try and reconstruct the
original data from the latent features.

Weight Initialization and PyTorch

Last assignment, we had you refrain from using torch.nn modules. For this assignment, we recommend using
nn.Linear for your linear layers. You will not need to initialize the weights yourself; the default He/Kaiming
uniform initialization in PyTorch will be sufficient for this problem. Hint: we also recommend using the
nn.Sequential module to organize your network class and simplify the process of writing the forward pass.
However, you may choose to organize your code however you’d like.

Training

Use optim.Adam for this question. Experiment with different learning rates. Use mean squared error (nn.MSELoss()
or F.mse loss()) for the loss function.

a. [10 points] Use a network with a single linear layer. Let We ∈ Rh×d and Wd ∈ Rd×h. Given some x ∈ Rd,
the forward pass is formulated as

F1(x) = WdWex.

Run experiments for h ∈ {32, 64, 128}. For each of the different h values, report your final error and
visualize a set of 10 reconstructed digits, side-by-side with the original image. Note: we omit the bias
term in the formulation for notational convenience since nn.Linear learns bias parameters alongside
weight parameters by default.

b. [10 points] Use a single-layer network with non-linearity. Let We ∈ Rh×d, Wd ∈ Rd×h, and activation
σ : R 7−→ R, where σ is the ReLU function. Given some x ∈ Rd, the forward pass is formulated as

F2(x) = σ(Wdσ(Wex)).

Report the same findings as asked for in part a (for h ∈ {32, 64, 128}).

c. [5 points] Now, evaluate F1(x) and F2(x) (use h = 128 here) on the test set. Provide the test reconstruction
errors in a table.

d. [5 points] In a few sentences, compare the quality of the reconstructions from these two autoencoders with
those of PCA from problem 4. You may need to re-run your code for PCA using the ranks k ∈ {32, 64, 128}
to match the h values used above.
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Image Classification on CIFAR-10

6. In this problem we will explore different deep learning architectures for image classification on the CIFAR-10
dataset. Make sure that you are familiar with tensors, two-dimensional convolutions (nn.Conv2d) and fully-
connected layers (nn.Linear), ReLU non-linearities (F.relu), pooling (nn.MaxPool2d), and tensor reshaping
(view).

A few preliminaries:

• Each network f maps an image xin ∈ R32×32×3 (3 channels for RGB) to an output f(xin) = xout ∈ R10.
The class label is predicted as arg maxi=0,1,...,9 x

out
i . An error occurs if the predicted label differs from the

true label for a given image.

• The network is trained via multiclass cross-entropy loss.

• Create a validation dataset by appropriately partitioning the train dataset. Hint : look at the documenta-
tion for torch.utils.data.random split. Make sure to tune hyperparameters like network architecture
and step size on the validation dataset. Do NOT validate your hyperparameters on the test dataset.

• At the end of each epoch (one pass over the training data), compute and print the training and validation
classification accuracy.

• While one would usually train a network for hundreds of epochs to reach convergence and maximize
accuracy, this can be prohibitively time-consuming, so feel free to train for just a dozen or so epochs.

For parts (a)–(c), apply a hyperparameter tuning method (grid search, random search, etc.) using the validation
set, report the hyperparameter configurations you evaluated and the best set of hyperparameters from this set,
and plot the training and validation classification accuracy as a function of epochs. Produce a separate line or
plot for each hyperparameter configuration evaluated. Finally, evaluate your best set of hyperparameters on
the test data and report the test accuracy.

Here are the network architectures you will construct and compare.

a. [10 points] Fully-connected output, 0 hidden layers (logistic regression): this network has no
hidden layers and linearly maps the input layer to the output layer. This can be written as

xout = Wvec(xin) + b

where xout ∈ R10, xin ∈ R32×32×3, W ∈ R10×3072, b ∈ R10 since 3072 = 32 · 32 · 3. For a tensor
x ∈ Ra×b×c, we let vec(x) ∈ Rabc be the reshaped form of the tensor into a vector (in an arbitrary but
consistent pattern). There is no required benchmark validation accuracy for this part.

b. [15 points] Fully-connected output, 1 fully-connected hidden layer: this network has one hidden
layer denoted as xhidden ∈ RM whereM will be a hyperparameter you choose (M could be in the hundreds).
The nonlinearity applied to the hidden layer will be the relu (relu(x) = max{0, x}. This network can be
written as

xout = W2relu(W1vec(xin) + b1) + b2

where W1 ∈ RM×3072, b1 ∈ RM , W2 ∈ R10×M , b2 ∈ R10. Tune the different hyperparameters and train for
a sufficient number of epochs to achieve a validation accuracy of at least 50%. Provide the hyperparameter
configuration used to achieve this performance.

c. [15 points] Convolutional layer with max-pool and fully-connected output: for a convolutional
layer W1 with filters of size k × k × 3, and M filters (reasonable choices are M = 100, k = 5), we have
that Conv2d(xin,W1) ∈ R(33−k)×(33−k)×M .

• Each convolution will have its own offset applied to each of the output pixels of the convolution; we
denote this as Conv2d(xin,W ) + b1 where b1 is parameterized in RM . Apply a relu activation to
the result of the convolutional layer.
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• Next, use a max-pool of size N ×N (a reasonable choice is N = 14 to pool to 2× 2 with k = 5) we

have that MaxPool(relu(Conv2d(xin,W1) + b1)) ∈ Rb
33−k

N c×b 33−k
N c×M .

• We will then apply a fully-connected layer to the output to get a final network given as

xoutput = W2vec(MaxPool(relu(Conv2d(xinput,W1) + b1))) + b2

where W2 ∈ R10×M(b 33−k
N c)2 , b2 ∈ R10.

The parameters M,k,N (in addition to the step size and momentum) are all hyperparameters, but you
can choose a reasonable value. Tune the different hyperparameters (number of convolutional filters, filter
sizes, dimensionality of the fully-connected layers, stepsize, etc.) and train for a sufficient number of
epochs to achieve a validation accuracy of at least 70%. Provide the hyperparameter configuration used
to achieve this performance. Make sure to save this model so that you can do the next part.

The number of hyperparameters to tune, combined with the slow training times, will hopefully give
you a taste of how difficult it is to construct networks with good generalization performance. State-of-
the-art networks can have dozens of layers, each with their own hyperparameters to tune. Additional
hyperparameters you are welcome to play with if you are so inclined, include: changing the activation
function, replace max-pool with average-pool, adding more convolutional or fully connected layers, and
experimenting with batch normalization or dropout.

d. [10 points] Adversarial Attacks: Modern deep neural networks are brittle and susceptible to small
perturbations to their inputs. This gives rise to adversarial examples, which are nearly indistinguishable
to the human eye but somehow “fool” neural networks into making drastically wrong predictions.

One algorithm to generate such examples is the untargeted fast gradient sign method (FGSM) attack,
which can be described as follows: let x be an input image with label y, F be a neural network, and ε be
a small value (intuitively, an attack rate).

ŷ = F(x)

L = CrossEntropy(ŷ, y)

x′ = x+ ε ∗ sign (∇xL)

where sign(t) = t
|t| . We then use x′ as an input to the network. Note that the calculation for x′ loosely

resembles gradient descent. Intuitively, we are slightly adjusting the input image so that the model is less
likely to predict its true class.

For this part, use your classifier from part (c) to do the following steps. As always, please provide all code
and plots.

1. Select four images from the train set that have been correctly classified. Visualize them and provide
their labels.

2. Implement the untargeted FGSM algorithm. Run one iteration on these images and visualize them:
they should look like the originals.

3. Provide the predicted labels for your attacked images. You should have at least one image that is
incorrectly classified. Remark: FGSM is a simple attack, but it’s not always effective. In order to
generate successful adversarial examples, you may need to try different values of ε or even different
images, depending on where your classifier excels.

4. Explain the significance of the existence of such adversarial examples.
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Text classification on SST-2

7. The Stanford Sentiment Treebank (SST-2) is a dataset of movie reviews. Each review is annotated with a
label indicating whether the sentiment of the review is positive or negative. Below are some examples from the
dataset. Note that often times the reviews are only partial sentences or even single words.

Sequence Sentiment

is one big , dumb action movie . Negative
perfectly executed and wonderfully sympathetic characters , Positive
until then there ’s always these rehashes to feed to the younger generations Negative
is like nothing we westerners have seen before . Positive

In this problem you will use a Recurrent Neural Network (RNN) for classifying reviews as either Positive (1) or
Negative (0).

Using an RNN for binary classification

Above is a simplified visualization of the RNN you will be building. Each token of the input sequence (CSE, 446,
. . . ) is fed into the network sequentially. Note that in reality, we convert each token to some integer index. But
training with discrete values does not work well, so we also ”embed” the words in a high-dimensional continuous
space. We already provided an nn.Embedding layer to you to do this. Each RNN cell (squares above) generates
a hidden state hi. We then feed the last hidden state into a simple fully-connected layer, which then produces
a single prediction between 0 and 1.

Setup

1. Download the GloVe embeddings from http://nlp.stanford.edu/data/glove.6B.zip. Extract the zip
file and move the file glove.6B.50d.txt into the same folder as the starter code (util.py, train.py,

hw4 p7.py).

2. Download the SST-2 dataset from here https://gluebenchmark.com/tasks (Click on download next to
The Stanford Sentiment Treebank). Extract the zip file into the same folder as above.

You only need to modify hw4 p7.py, however you are free to also modify the other two files. You only need to
submit hw4 p7.py, but if you make changes to the other files you should also include them in your submission.

Problems

a. [10 points] In Natural Language Processing (NLP), we usually have to deal with variable length data. In
SST-2, each data point corresponds to a review, and reviews often have different lengths. The issue is
that to efficiently train a model with textual data, we need to create batches of data that are fixed size
matrices. In order to store a batch of sequences in a single matrix, we add padding to shorter sequences
so that each sequence has the same length. Given a list of N sequences, we:

1. Find the length of the longest sequence in the batch, call it max sequence length

6

http://nlp.stanford.edu/data/glove.6B.zip
https://gluebenchmark.com/tasks


2. Append padding tokens to the end of each sequence so that each sequence has length max sequence length

3. Stack the sequences into a matrix of size (N, max sequence length)

In this process, words are mapped to integer ids, so in the above process we actually store integers rather
than strings. For the padding token, we simply use id 0. In the file hw4 a2.py, fill out collate fn to
perform the above batching process. Details are provided in the comment of the function.

b. [15 points] Implement the constructor and forward method for RNNBinaryClassificationModel. You
will use three different types of recurrent neural networks: the vanilla RNN (nn.RNN), Long Short-Term
Memory (nn.LSTM) and Gated Recurrent Units (nn.GRU). For the hidden size, use 64 (Usually this is a
hyperparameter you need to tune). We have already provided you with the embedding layer to turn token
indices into continuous vectors of size 50, but you will need a linear layer to transform the last hidden
state of the recurrent layer to a shape that can be interpreted as a label prediction. The code for each of
the three networks will only differ by the recurrent layer you use. In your code submission, use any of the
three layers.

c. [5 points] Implement the loss method of RNNBinaryClassificationModel, which should compute the
binary cross-entropy loss between the predictions and the target labels. Also implemented the accuracy

method, which given the predictions and the target labels should return the accuracy.

d. [15 points] We have already provided all of the data loading, training and validation code for you. Choose
an appropriate batch size, learning rate and number of epochs and set the constants TRAINING BATCH SIZE,
NUM EPOCHS, LEARNING RATE accordingly. With a good learning rate, you shouldn’t have to train for more
than 16 epochs. Report your best validation loss and corresponding validation accuracy, corresponding
training loss and training accuracy for each of the three types of recurrent neural networks.

e. [5 points] Currently we are only using the final hidden state of the RNN to classify the entire sequence
as being either positive or negative sentiment. But can we make use of the other hidden states? Suppose
you wanted to use the same architecture for a related task called tagging. For tagging, the goal is to
predict a tag for each token of the sequence. For instance, we might want predict the part of speech tag
(verb, noun, adjective etc.) of each token. In a few sentences, describe how you would modify the current
architecture to predict a tag for each token.
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