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Process

Collect a data set

Decide on a model

Find the function which fits the data best
Choose a loss function

Pick the function which minimizes loss on data

Use function to make prediction on new examples



The regression problem

Given past sales data on zillow.com, predict:

y = House sale price
x = {# sq. ft., zip code, date of sale, etc.}

Training Data:
(4

Ui, ¥i) iy

Hypothesis:

best linear fit

Sale Price

Loss:

# square feet
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The regression problem

Given past sales data on zillow.com, predict:

y = House sale price from
x = {# sq. ft., zip code, date of sale, etc.}

best linear fit

Sale Price

date of sale
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Quadratic Regression

Given past sales data on zillow.com, predict:

y = House sale price
x = {# sq. ft., zip code, date of sale, etc.}

Training Data:
(4

Ui, ¥i) iy

Hypothesis:

best quadratic fit

Sale Price

date of sale
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Polynomial regression

Given past sales data on zillow.com, predict:

y = House sale price
x = {# sq. ft., zip code, date of sale, etc.}

Training Data:
(4

Ui, ¥i) iy

Hypothesis:

degree p fit

Sale Price

date of sale


http://zillow.com

Generalized linear regression

Given past sales data on zillow.com, predict:

y = House sale price
x = {# sq. ft., zip code, date of sale, etc.}

Training Data:

Uiy ¥i) Fien
Hypothesis:

Sale Price

date of sale


http://zillow.com

Generalized Linear Regression

Training Data:

a;f- Géll{%&d Hypothesis:
{(ajia yZ) ?:1 @

Transformed data:

Loss:



The regression problem

Training Data: z; € R

y; € R
{(:137;, ?/z) i1 Transformed data:

by (2)

hQZE
) = [}

Ay (5’7)_

Hypothesis: linear in h
Yi ~ h(xz)Tw w € R

Loss: least squares

min Z (yi — h(ajf,;)Tw)2
i=1

Sale Price

date of sale
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Which is better?

Sale Price

A: large p

!

large p fit

]

date of sale

Sale Price

B: small p

small p fit

date of sale



Predicting sale price for a new house: Avs B

A: large p B: small p

Sale Price
Sale Price

X X
date Of Sale new date Of Sale Al

Our goal is to predict prices for new houses



Average Accuracy

y

Sale Price

date of sale x

On average over a house
drawn from this distribution,
we want to make a good prediction.
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1ICES

predict future sale pri
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Statistical Learning

Goal: Predict Y given X

Find a function n that minimizes

xy (Y —n(X))?]

Thus far, we’ve been using n which is a:
- Linear functions of X

- Degree p polynomials of X

- Linear “generalization” of X
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Statistical Learning

Goal: Predict Y given X

Find a function n that minimizes

Lxy [(Y = 0(X)?] = Ex |Eyx [(Y = n(z))*|X = w]:

n(z) = argmin By x[(Y — ¢)*|X = 2] = Ey|x[Y[X = ]




Optimal Prediction




Statistical Learning

ny(X — w,Y — y)

Ideally, we want to find:
n(z) = Ey|x[Y|X = 7]

But we only have samples:
(%5, o) " Pxy fori=1,...,n
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Statistical Learning

Pxy(X =z,Y = y) Ideally, we want to find:

n(zr) =

AN

X

Ly x [Y|X = ]

But we only have samples:
(il?i,yi) Z.Z/\.Jd. PXY for ¢ = 1,...,n
and are restricted to a

function class (e.g., linear)

SO we compute:

n

1

f = argmin — Z(yz — f(x:))?

JETF M

=i

We care about future predictions: Exy
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Statistical Learning

Pxy (X =x,Y = y) Ideally, W% want to find:
n(z) = By x|[Y[X = z]

But we only have samples:
(le‘i,yi) Z.Z\.Jd' PXY for ¢ = 1,...,n

and are restricted to a
function class (e.g., linear)

SO we compute:

P, il o

» J = arg ]}%12 = ;(yz - f(il%;))2

Each draw D = {(x;, y;) }, results in different f
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Bias-Variance Tradeoff

' - 1
n(x) = "AYIX[Y‘X - 5’3] = argl]f,_,rggg Z(yi = f(fﬂi))z

=il
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Bias-Variance Tradeoff

' - 1
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Bias-Variance Tradeoff

irreducible error

+(n(x) — Ep[fp(x)])? +

bias squared

ip|(

If we re-drew our data, what the LS training error

variance

error

estimator look like for generalized linear functions

in small p/large p dimensions?
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Ly ix [En[(Y — fo(@)*]|X = 2] = Eyix[(Y —n(x)*|X = 4]

o fp(x)] — fo())’

0.2

0.4

complexity

0.6

—— bias?
——— variance
—— total

0.8

10

24



Example: Linear LS

Y = Xw + €

ity = x;rw +¢€; and ¢ R N(0,0%)



Example: Linear LS: compute bias

Y = Xw + €

if yy=x2/w+e and ¢ S N(0,0°)
@MLE _ (XTX)_lXTY — w4+ (XTX)_1XT€
n(z) = Ey|x[Y[X =z
fo(x) =0Tz =wlz+ e X(XTX) 1z
(n(x) — Ep[fp(x)])*

bias squared
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Example: Linear LS: compute variance

Y = Xw + €

if yy=x2/w+e and ¢ S N(0,0°)
@MLE _ (XTX)_lXTY — w4+ (XTX)_1XT€
fo(x) =0Tz =wlz+ e X(XTX) 1z

S

2o [(Ep[fo(x)] — fo(z))?] =

variance
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Example: Linear LS

Y = Xw + €

ity = ﬂff;,rw +¢€; and ¢ R N(0,0%)
@MLE _ (XTX)_lXTY — w4+ (XTX)_1XT€
n(x) =Ey x|Y|X = z]

fo(x) =0Tz =wlz+ e X(XTX) 1z

Ly [(V (@)X =2 =02 (n(z) —Ep[fn(2)])* = 0
irreducible error

bias squared

S

ﬂx—x[“lp[( *373[1?7)(33)] — fD(x)ﬂ] po”

variance n
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Overfitting
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Bias-Variance Tradeoff

> Choice of hypothesis class introduces learning bias
- More complex class — less bias
- More complex class = more variance

> But in practice??



Bias-Variance Tradeoff

> Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance

> But in practice??

> Before we saw how increasing the feature space can
increase the complexity of the learned estimator:

F1 CFoCF3C...

2(k) _ 1 ()2
(z:,y:)€ED

Complexity grows as k grows



Training set error as a function of model complexity

TRAIN error:
ii.d.

F1 CFoC FgC... D~ Pxy
1 1 k
) —arg min — > (yi— f@)® = Y. (Wi~ fn (@)
feFi |D) D]
(x;,y:) €D (xi,y:) €D
TRUE error:

ey (Y — ) (X))?]

Complexity (k)



Training set error as a function of model complexity

F1 CFoC FzC...
i3 1

= arg min —— Z (yz — f(xZ))Q

JES ‘D| (z:,y:)ED

TRAIN error:

1.2.d.
D ~ Pxy

1
oo N7 (- ) (w)?
(xi,y;)ED
TRUE error:
ey (Y — ) (X))?]

TEST error:

1.1.d.
T~ PXY

% Z (yi — Aq(pk)(ili‘fz))z

(i,y:)ET

Important: DNT = ()



Training set error as a function of model complexity
TRAIN error:

o
F1 CFoC FzC... D~ Pxy
1 1 k
) =argmin o 3 (i f@)? o Y i Sy (@)’
feFi | D D|
(zi,y:)ED (z:,y:)€ED
? - v o v TRUE error:
o . k 2
© Cxy (Y — Aq(p)(X)) |
¢ TEST error:
S .2.d.
= == | T'~" Pxy
g 1 k
m Z (yi — Ai(p)(%'))z
S (z:,y:)ET
S 1 Each] line i§ i.i.@l.I dravxlf of DI or 7'I | Imp()rtant; DNT = @
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0
CO m p I eXIty (k Plot from Hastie et al



Training set error as a function of model complexity

F1 C Fo C Fa C
I 1
]?1()) — arg}mg}ﬂ ﬁ Z (yi — f(%))Q
(CB yZ)GD

TRAIN error is optimistically
biased because it is evaluated on
the data it trained on. TEST error

is unbiased only if T is never used
to train the model or even pick
the complexity k.

TRAIN error:

d.
D 7. z PXY
1 k
(z;,y:)ED

TRUE error:
Ly (Y — F92 (X))

TEST error:

% Z (i — [ (1))

Important: DN7T = ()



How many points do | use for training/testing?

> Very hard question to answer!
- Too few training points, learned model is bad
- Too few test points, you never know if you reached a good

solution
> More on this later the quarter, but still hard to answer
> Typically:
- If you have a reasonable amount of data 90/10 splits are
common

- If you have little data, then you need to get fancy (e.g.,
bootstrapping)



