Generalized Linear Regression and Bias-Variance Tradeoff

Process

Collect a data set

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss on data

Use function to make prediction on new examples

The regression problem

Given past sales data on zillow.com, predict:

```
y = House sale price
```

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Loss:

The regression problem

Given past sales data on <u>zillow.com</u>, predict:

```
y = House sale price from
```

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Quadratic Regression

Given past sales data on zillow.com, predict:

y = House sale price

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Polynomial regression

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Generalized linear regression

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Generalized Linear Regression

Training Data:
$$x_i \in \mathbb{R}^d \ \{(x_i,y_i)\}_{i=1}^n \ y_i \in \mathbb{R}$$
 Hypothesis:

Transformed data:

Loss:

The regression problem

Training Data:
$$x_i \in \mathbb{R}^d$$
 $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear in h

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

The regression problem

Training Data:
$$x_i \in \mathbb{R}^d$$
 $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear in h

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Which is better?

A: large p

large p fit

date of sale

Predicting sale price for a new house: A vs B

Our goal is to predict prices for new houses

Average Accuracy

On *average* over a house drawn from this distribution, we want to make a good prediction.

Goal: predict future sale prices

$$P_{XY}(X=x,Y=y)$$

Goal: Predict Y given X

Find a function η that minimizes

$$\mathbb{E}_{XY}[(Y - \eta(X))^2]$$

Thus far, we've been using η which is a:

- Linear functions of X
- Degree p polynomials of X
- Linear "generalization" of X

$$P_{XY}(X=x,Y=y)$$

Goal: Predict Y given X

Find a function η that minimizes

$$\mathbb{E}_{XY}[(Y - \eta(X))^2] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[(Y - \eta(X))^2 | X = X] \right]$$

$$\eta(x) = \arg\min_{c} \mathbb{E}_{Y|X}[(Y-c)^{2}|X=x] = \mathbb{E}_{Y|X}[Y|X=x]$$

Under LS loss, optimal predictor: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$

Optimal Prediction

$$\mathbb{E}_{XY}[(Y - \eta(X))^{2}] = \mathbb{E}_{X} \left[\mathbb{E}_{Y|X}[(Y - \eta(X))^{2} | X = X] \right]$$

Under LS loss, optimal predictor: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples:

$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \dots, n$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples:

$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \dots, n$$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

We care about future predictions: $\mathbb{E}_{XY}[(Y - \widehat{f}(X))^2]$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples:

$$(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY} \quad \text{for } i = 1, \dots, n$$

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X=x] \qquad \widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X=x] \qquad \widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X=x] \qquad \widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\mathbb{E}_{Y|X}\left[\mathbb{E}_{\mathcal{D}}\left[(Y-\widehat{f}_{\mathcal{D}}(x))^{2}\right]\middle|X=x\right] = \mathbb{E}_{Y|X}\left[(Y-\eta(x))^{2}\middle|X=x\right]$$

irreducible error

$$+(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^{2} + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^{2}]$$

bias squared

If we re-drew our data, what the LS training error estimator look like for generalized linear functions in small p/large p dimensions?

variance

Example: Linear LS

$$\mathbf{Y} = \mathbf{X}w + \epsilon$$

if
$$y_i = x_i^T w + \epsilon_i$$
 and $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Example: Linear LS: compute bias

$$\mathbf{Y} = \mathbf{X}w + \epsilon$$

$$\text{if} \quad y_i = x_i^T w + \epsilon_i \quad \text{and} \quad \epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

$$\widehat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = w + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = \mathbb{E}_{Y|X} [Y|X = x]$$

$$\widehat{f}_{\mathcal{D}}(x) = \widehat{w}^T x = w^T x + \epsilon^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x$$

$$\underbrace{(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2}_{ \text{bias squared} }$$

Example: Linear LS: compute variance

$$\mathbf{Y} = \mathbf{X}w + \epsilon$$

if
$$y_i = x_i^T w + \epsilon_i$$
 and $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = w + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\widehat{f}_{\mathcal{D}}(x) = \widehat{w}^T x = w^T x + \epsilon^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} x$$

$$\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2] =$$
variance

Example: Linear LS

$$\mathbf{Y} = \mathbf{X}w + \epsilon$$

$$\begin{split} &\text{if} \quad y_i = x_i^T w + \epsilon_i \quad \text{and} \quad \epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0,\sigma^2) \\ &\widehat{w}_{MLE} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = w + (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\epsilon \\ &\eta(x) = \mathbb{E}_{Y|X}[Y|X=x] \\ &\widehat{f}_{\mathcal{D}}(x) = \widehat{w}^Tx = w^Tx + \epsilon^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x \\ &\underline{\mathbb{E}_{XY}[(Y-\eta(x))^2|X=x]} = \sigma^2 & \frac{(\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2 = 0}{\text{bias squared}} \\ &\underline{\mathbb{E}_{X=x}\left[\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2]\right]} \\ &\underline{variance} &= \frac{p\sigma^2}{n} \end{split}$$

Overfitting

- > Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance
- > But in practice??

- > Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance
- > But in practice??
- > Before we saw how increasing the feature space can increase the complexity of the learned estimator:

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Complexity grows as k grows

$$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \dots \qquad \qquad \mathcal{D}^{i.i.d.} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}} (y_{i} - f(x_{i}))^{2} \qquad \frac{1}{|\mathcal{D}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}} (y_{i} - \widehat{f}_{\mathcal{D}}^{(k)}(x_{i}))^{2}$$

TRAIN error:

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \hat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots \qquad \qquad \mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2 \qquad \qquad \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRAIN error:

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \hat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY} \\
\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \dots$ $\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_k} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2 \qquad \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$

TRAIN error:

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY} \\
\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

$$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \dots \qquad \qquad \mathcal{D}^{i.i.d.} P_{XY}$$

$$\widehat{f}_{\mathcal{D}}^{(k)} = \arg\min_{f \in \mathcal{F}_{k}} \frac{1}{|\mathcal{D}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}} (y_{i} - f(x_{i}))^{2} \qquad \frac{1}{|\mathcal{D}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}} (y_{i} - \widehat{f}_{\mathcal{D}}^{(k)}(x_{i}))^{2}$$

TRAIN error is optimistically biased because it is evaluated on the data it trained on. TEST error is **unbiased** only if *T* is never used to train the model or even pick the complexity k.

TRAIN error:

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

TRUE error:

$$\mathbb{E}_{XY}[(Y-\widehat{f}_{\mathcal{D}}^{(k)}(X))^2]$$

TEST error:

$$\mathcal{T} \stackrel{i.i.d.}{\sim} P_{XY} \\
\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{f}_{\mathcal{D}}^{(k)}(x_i))^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

How many points do I use for training/testing?

- > Very hard question to answer!
 - Too few training points, learned model is bad
 - Too few test points, you never know if you reached a good solution
- > More on this later the quarter, but still hard to answer
- > Typically:
 - If you have a reasonable amount of data 90/10 splits are common
 - If you have little data, then you need to get fancy (e.g., bootstrapping)