
Generalized Linear 
Regression and Bias-
Variance Tradeoff
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Process

Collect a data set


Decide on a model 


Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss on data


Use function to make prediction on new examples
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The regression problem

# square feet

Sa
le

 P
ric

e

Given past sales data on zillow.com, predict:

     y = House sale price 

     x = {# sq. ft., zip code, date of sale, etc.} 

Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis:


Loss:

best linear fit
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The regression problem

date of sale

Sa
le

 P
ric

e
best linear fit

Given past sales data on zillow.com, predict:

     y = House sale price from 

     x = {# sq. ft., zip code, date of sale, etc.} 
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Quadratic Regression

date of sale

Sa
le

 P
ric

e
Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis:

best quadratic fit

Given past sales data on zillow.com, predict:

     y = House sale price

     x = {# sq. ft., zip code, date of sale, etc.} 
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Polynomial regression

date of sale

Sa
le

 P
ric

e
Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: 


degree p fit

Given past sales data on zillow.com, predict:

     y = House sale price

     x = {# sq. ft., zip code, date of sale, etc.} 
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Generalized linear regression

date of sale

Sa
le

 P
ric

e
Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Hypothesis: 

Given past sales data on zillow.com, predict:

     y = House sale price 

     x = {# sq. ft., zip code, date of sale, etc.} 
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Generalized Linear Regression

Training Data:

{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

Transformed data:
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Hypothesis:

Loss:



The regression problem

Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R
Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear in h

Loss: least squares

yi ⇡ h(xi)
Tw w 2 Rp

min
w

nX

i=1

�
yi � h(xi)

Tw
�2

small p fit

date of sale

S
al

e 
P

ric
e
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The regression problem

Training Data:
{(xi, yi)}ni=1

xi 2 Rd

yi 2 R

date of sale

S
al

e 
P

ric
e
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large p fit

Transformed data:

h(x) =

2

6664

h1(x)
h2(x)

...
hp(x)

3

7775

Hypothesis: linear in h

Loss: least squares

yi ⇡ h(xi)
Tw

min
w

nX

i=1

�
yi � h(xi)

Tw
�2

w 2 Rp



Which is better?

date of sale

S
al

e 
P

ric
e
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large p fit small p fit

date of sale

S
al

e 
P

ric
e

A: large p B: small p



Predicting sale price for a new house: A vs B

date of sale

S
al

e 
P

ric
e
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large p fit

A: large p

small p fit

date of sale

S
al

e 
P

ric
e

B: small p

xnew xnew

Our goal is to predict prices for new houses



Average Accuracy
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x

y

PXY (X = x, Y = y)

date of sale

S
al

e 
P

ric
e

On average over a house 

drawn from this distribution, 

we want to make a good prediction.



Goal: predict future sale prices

x

y

PXY (X = x, Y = y)

x0 x1

PXY (Y = y|X = x0)
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PXY (Y = y|X = x1)



Statistical Learning

PXY (X = x, Y = y)

Goal: Predict Y given X

EXY [(Y � ⌘(X))2]
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Thus far, we’ve been using η which is a:

- Linear functions of X

- Degree p polynomials of X

- Linear “generalization” of X

Find a function η that minimizes



Statistical Learning

PXY (X = x, Y = y)

Goal: Predict Y given X

EXY [(Y � ⌘(X))2] = EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

⌘(x) = argmin
c

EY |X [(Y � c)2|X = x] = EY |X [Y |X = x]

Under LS loss, optimal predictor: ⌘(x) = EY |X [Y |X = x]
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Find a function η that minimizes



Optimal Prediction

EXY [(Y � ⌘(X))2] = EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

Under LS loss, optimal predictor: ⌘(x) = EY |X [Y |X = x]
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Statistical Learning

x

y

PXY (X = x, Y = y) Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

⌘(x) = EY |X [Y |X = x]
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Statistical Learning

x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

We care about future predictions: EXY [(Y � bf(X))2]

⌘(x) = EY |X [Y |X = x]
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Statistical Learning

x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

ED[ bf(x)]
bf = argmin

f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]

22



Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]
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If we re-drew our data, what the LS training error 

estimator look like for generalized linear functions 

in small p/large p dimensions?

Bias-Variance Tradeoff

bias squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]
irreducible error

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [(Y � ⌘(x))2

��X = x]
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variance



Example: Linear LS

if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

Y = Xw + ✏
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Example: Linear LS: compute bias

if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

⌘(x) = EY |X [Y |X = x]

bias squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]
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Example: Linear LS: compute variance

if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= ED[x
T (XTX)�1XT ✏✏TX(XTX)�1x]
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Example: Linear LS

if yi = xT
i w + ✏i and ✏i

i.i.d.⇠ N (0,�2)

bwMLE = (XTX)�1XTY

Y = Xw + ✏

= w + (XTX)�1XT ✏

bfD(x) = bwTx = wTx+ ✏TX(XTX)�1x

⌘(x) = EY |X [Y |X = x]

EXY [ED[(Y � bfD(x))2]
��X = x] = EXY [(Y � ⌘(x))2

��X = x]= �2

irreducible error bias squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]= 0

variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]EX=x

⇥ ⇤
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Overfitting
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> Choice of hypothesis class introduces learning bias

– More complex class → less bias

– More complex class → more variance

> But in practice?? 

Bias-Variance Tradeoff



F1 ⇢ F2 ⇢ F3 ⇢ . . .

Complexity grows as k grows

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2

> Choice of hypothesis class introduces learning bias

– More complex class → less bias

– More complex class → more variance

> But in practice?? 

> Before we saw how increasing the feature space can 

increase the complexity of the learned estimator:

Bias-Variance Tradeoff



F1 ⇢ F2 ⇢ F3 ⇢ . . .

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

Training set error as a function of model complexity
TRAIN error: 
D i.i.d.⇠ PXY



F1 ⇢ F2 ⇢ F3 ⇢ . . .

TRUE error: 
EXY [(Y � bf (k)

D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2 1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

TEST error: 

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

T i.i.d.⇠ PXY

Important: D \ T = ;

Training set error as a function of model complexity
TRAIN error: 
D i.i.d.⇠ PXY



F1 ⇢ F2 ⇢ F3 ⇢ . . .

EXY [(Y � bf (k)
D (X))2]

Complexity (k)

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

Plot from Hastie et al

TRUE error: 

TEST error: 

Training set error as a function of model complexity
TRAIN error: 
D i.i.d.⇠ PXY

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2



Training set error as a function of model complexity

F1 ⇢ F2 ⇢ F3 ⇢ . . .

EXY [(Y � bf (k)
D (X))2]

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2

1

|T |
X

(xi,yi)2T

(yi � bf (k)
D (xi))

2

T i.i.d.⇠ PXY

Important: D \ T = ;

TRAIN error is optimistically 
biased because it is evaluated on 
the data it trained on. TEST error 
is unbiased only if T is never used 
to train the model or even pick 
the complexity k. 

TRUE error: 

TEST error: 

TRAIN error: 
D i.i.d.⇠ PXY

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2



How many points do I use for training/testing?

> Very hard question to answer!

– Too few training points, learned model is bad
– Too few test points, you never know if you reached a good 

solution
> More on this later the quarter, but still hard to answer

> Typically:

– If you have a reasonable amount of data 90/10 splits are 

common 

– If you have little data, then you need to get fancy (e.g., 

bootstrapping) 


