- 1) # 6f features/ bosis functions
- 2 + 211W1/2

Simple variable selection: LASSO for sparse regression

Sparsity

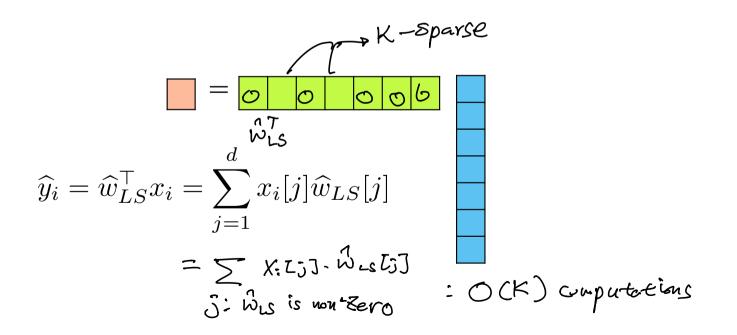
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Vector w is sparse, if many entries are zero

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(w) = 100 Billion, each prediction w^Tx is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w



Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

 How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
floors
Flooring types
Parking type
Parking amount
Cooling
Heating

Exterior materials

Roof type Structure style Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn

Sprinkler System

Garden

Finding best subset: Exhaustive

- > Try all subsets of size 1, 2, 3, ... and one that minimizes validation error

 Minimum Description Laughth.
- > Problem?

$$\frac{1}{2} \begin{pmatrix} d \\ k \end{pmatrix} = 2^{d}$$

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

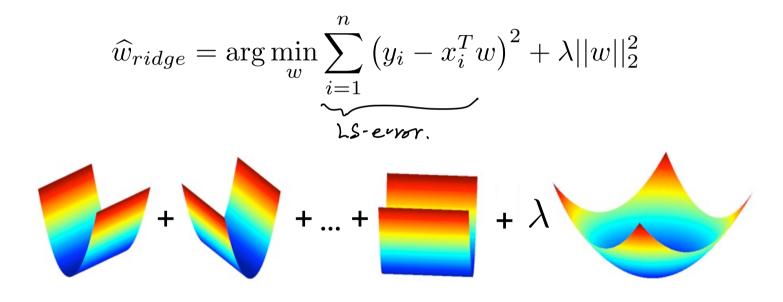
Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as important Fraud Greedy

Lots of other variants, too.

Finding best subset: Regularize

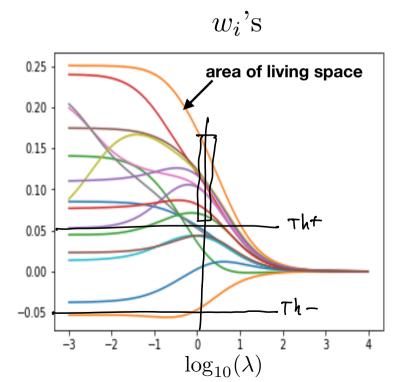
Ridge regression makes coefficients small



Finding best subset: Regularize

Ridge regression makes coefficients small

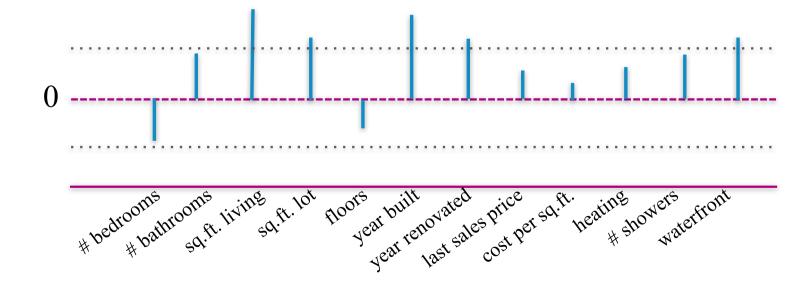
$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$



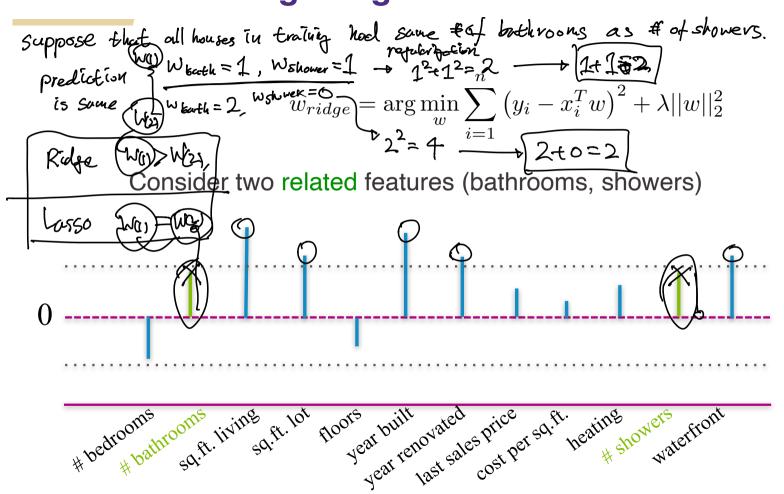
Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

Why don't we just set **small** ridge coefficients to 0?



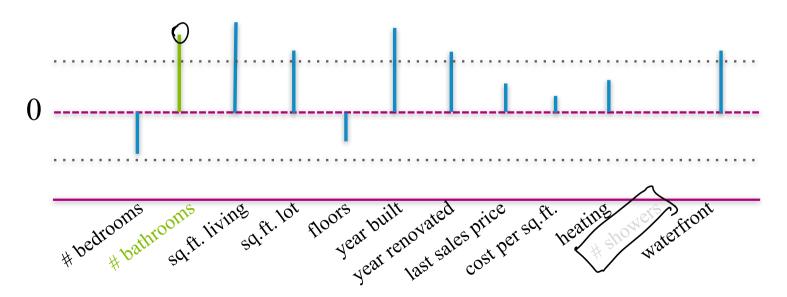
Thresholded Ridge Regression



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

What if we didn't include showers? Weight on bathrooms increases!



Can another regularizer perform selection automatically?

Recall Ridge Regression

Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum (y_i - x_i^T w)^2 + \lambda ||w||_2^2$ 1-D 2-0 الراسال $||w||_p = \left(\sum_{i=1}^d |w_i|^p\right)^1$ 411/1/27 1/w// = [W/+/W2]

Ridge vs. Lasso Regression

Ridge Regression objective:

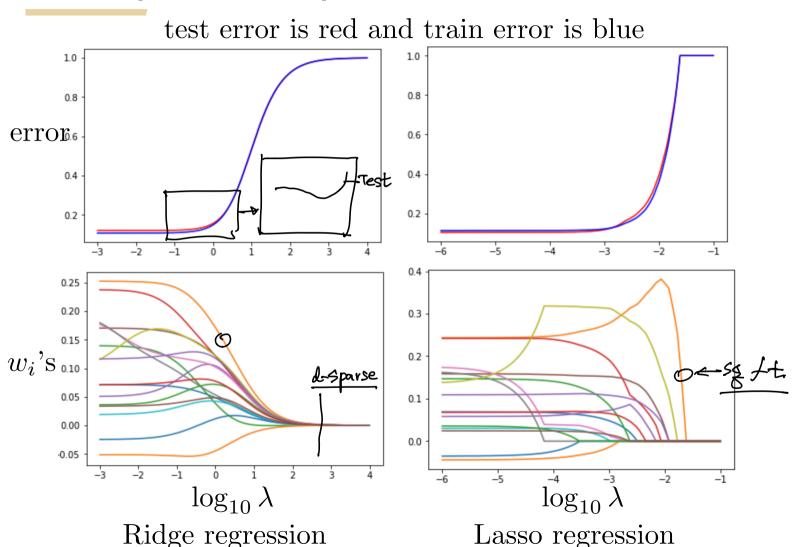
Ridge Regression objective:
$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_2^2$$

$$+ \dots + \dots + \lambda$$

Lasso objective:

$$\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_1$$

Example: house price with 16 features



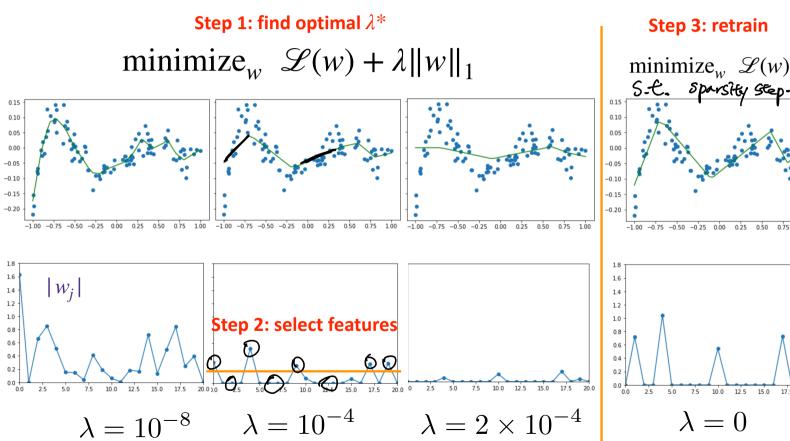
Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. choose λ based on cross validation error
 - 2. keep only those features with non-zero (or not-too-small) parameters in w at optimal λ $\longrightarrow \int_{e} \int_{u} du$
 - 3. retrain with the sparse model and $\underline{\lambda=0}$ No Replangation.

Example: piecewise-linear fit

• We use Lasso on the piece-wise linear example $h_i(x) = [x+1.1-0.1i]^+$

 $h_0(x) = 1$



de-biasing (via re-training) is critical!

but only use selected features

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)$$

Penalized Least Squares

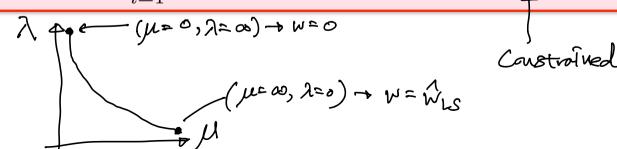
Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n \left(y_i - x_i^T w \right)^2 + \lambda r(w) \quad \leftarrow \text{Penalized}$$

$$\widehat{w}_{\lambda} = \lambda_{\mu} \gamma$$

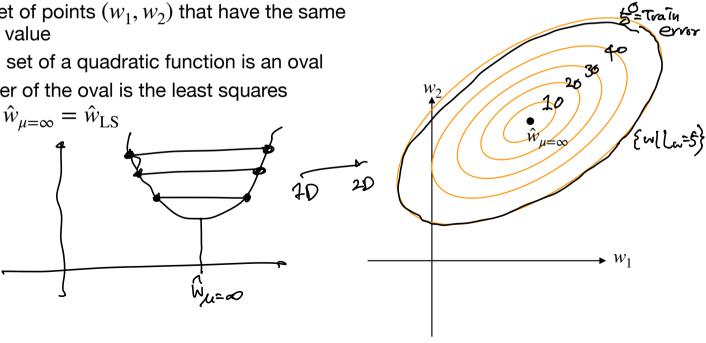
For any $\lambda \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu \geq 0$ such that

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \mu$



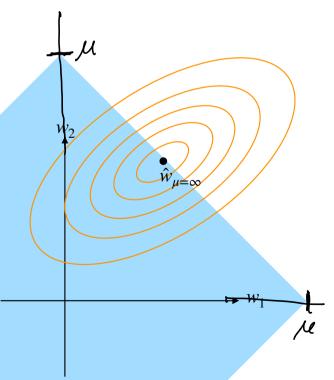
minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- the **level set** of a function $\mathcal{L}(w_1, w_2)$ is defined as the set of points (w_1, w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{\mu=\infty} = \hat{w}_{\mathrm{LS}}$



minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- as we decrease \(\mu \) from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{(w_1,w_2)\,\middle|\, |w_1|+|w_2|\leq \mu\right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution



feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

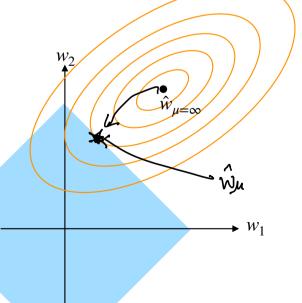
$$\operatorname{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_1 \le \mu$

• As μ decreases (which is equivalent to increasing regularization) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

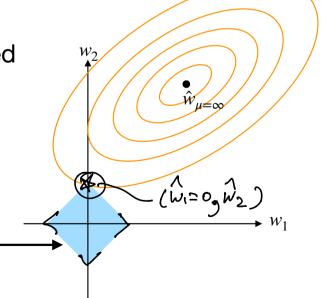


minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

• For small enough μ , the optimal solution becomes **sparse**

feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

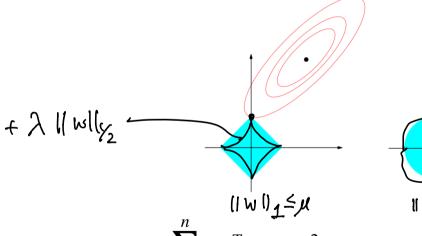
• This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes



Penalized Least Squares

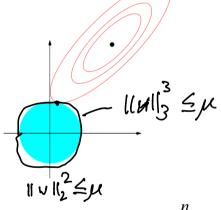
- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- Ridge regression finds dense solutions, as L_2 -ball is "smooth"

Lasso



minimize_w $\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

subject to $||w||_1 \leq \mu$



minimize_w $\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$ subject to $||w||_{2}^{2} \le \mu$

Questions?

min h(x,y)5.t. $(|w|)_1 \leq 1$ VS.

min Lw (xt)

s.t. IIwly < 1

less Sparse.

more sparse

Wyz mne Zeros,

K-sparse = K usu-Zero

more sparse = K = more Zero.