@ #f@]- fca—&qves/&(»sk fwcehs

@ +Allwl,

. Jeatare, .
Simple varidble selection:

LASSO for sparse regression

W



SparSity Wrs = arg minz (yZ — xZTw)2
1=1

= Vector w is sparse, if many entries are zero



SparSity Wrs = arg minz (yZ — ,q;ZTw)2
1=1

= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w
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Spal‘Sity Wrs = arg minz (yZ — x?w)2
1=1

= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

How do we find “best” subset of Heating
features useful in predicting the ;xte]jiof materials

. . oof type
price among all possible Structure style
combinations?

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System



Finding best sulfset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that minimizes

validation error MinTuces  Decoy€ion Laug-th,

> Problem?
Evwverpoy = A-Blwl,
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Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as

important Fovcomd Graedsy
. T=¢
Lots of other variants, too. fe God -~ K
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Finding best subset: Regularize

Ridge regression makes coefficients small

n
~ . 2
Wridge — aAI'g m,JnZ (yz — x;,rw) T )\||UJH§
1=1
~——
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Finding best subset: Regularize

Ridge regression makes coefficients small

n

~ . 2

Wyridge — aAl'g Hgl’lz (yz — $?w) T )\”UJH%
1=1

0.25 1

0.20 1

015 4

010 1

0.05 4

0.00 1

-0.05




Thresholded Ridge Regression

n

—~ . 2

Wridge — Arg H}})HZ (yz - QS‘;F’U)) + )‘Hng
1=1

Why don’t we just set small ridge coefficients to 07
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Thresholded Ridge Regression

1 Tut o & ol sh
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Thresholded Ridge Regression

n

—~ . 2

Wridge — Arg H}})HZ (yz - QS‘?’U)) + )‘Hng
1=1

What if we didn’t include showers? Weight on bathrooms increases!

'_'_'_'_'_\'_'_'_'_'_'['_'_'_'J'_'_'_'_'_' IR

Can another regularizer perform selection automatically?



Recall Ridge Regression

= Ridge Regressmn objective:

2
wmdge — argmlnz _x?w) +)‘Hng
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d \/P
Ridge vs. Lasso Regression 1 :(}.,‘(\ wii) )

= Ridge Regressmn objective:

Brigge = arg mmz — 2Tw)” + Aljw|[3
1=1
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Example: house price with 16 features

test error is red and train error is blue
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Lasso regression naturally gives sparse features

» feature selection with Lasso regression

1. choose A based on cross validation error
2. keep only those features with non-zero (or not-too-small)
parameters in w at optimal A —— feetune seleoting

3. retrain with the sparse model and A = 0
Neo Qeﬁ—v\aﬁ&a«e?m.
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Example: piecewise-linear fit

ho(z)
* We use Lasso on the piece-wise linear example p,(x)

Step 1: find optimal A*
minimize,, L (w) + A||lw||,

=1
= [z +1.1-0.14"

Step 3: retrain

minimize,, £ (w)
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08 Step 2: select features o
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02 CD ® @ 02
00 25 50 75 100 125 150 175 20.000 5 5.0 5 100 150 175 200 0 25 50 75 100 125 150 175 200 0o

A=10"% A=10""* A=2x10""
* de-biasing (via re-training) is critical!
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00 25 50 75 100 125 150 175 200

A=0

but only use selected features



Penalized Least Squares
Ridge : r(w) = [[wl|}  Lasso: r(w) = ||wl];

W, = arg min Z (yi — x?w)Q + Ar(w)

w
1=1



Penalized Least Squares

Ridge : r(w) = ||w||3  Lasso: r(w) = ||wl|;

A
i 2 Wou T

For any 4 > O for which W, achieves the minimum, there exists a ¢ > 0 such that

W, = arg mul)nz (yi — :C;-Fw)z subject to r(w) <
1=1 4
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Why does Lasso give sparse solutions?

n
o . . T 2
minimize,, Z W' x;—y,;)
i=1

subject to |[|w|l; < u

« the level set of a function £ (w,, w,) is defined

as the set of points (w, w,) that have the same
function value

e the level set of a quadratic function is an oval

e the center of the oval is the least squares
solution w,_, = Wi g




Why does Lasso give sparse solutions?

n
o . . T 2
minimize,, Z W' x;—y,;)
i=1

subject to |[|w|l; < u

e as we decrease u from infinity, the feasible set

becomes smaller M
* the shape of the feasible set is what is known as

L ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond 2
{(W1,W2)‘ (Wi |+ 1wy | < uj

« when u is large enough such that ||w, -l < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| ||w||,; < u} —>



Why does Lasso give sparse solutions?

n
o . . T 2
minimize,, Z W' x;—y,;)
i=1

subject to |[|w|l; < u

e As u decreases (which is equivalent to

increasing regularization) the feasible set
(blue diamond) shrinks

* The optimal solution of the above W,
optimization is

feasible set: {w € R?| ||w||, < u} —>




Why does Lasso give sparse solutions?

n
o . . T 2
minimize,, Z W' x;—y,;)
i=1

subject to |[|w|l; < u

For small enough pu, the optimal solution
becomes sparse

This is because the L;-ball is
“pointy”.i.e., has sharp edges aligned e
with the axes
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feasible set: {w € R? | ||w||, < u} —>




Penalized Least Squares

P
Lasso regression finds sparse solutions, as L-ball is “pointy”

Ridge regression finds dense solutions, as L,-ball is “smooth”

Rilge
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) (lwiy<u
minimize,, Z wlx; —y,)?
i=1

subject to ||w|[;, < u
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n
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minimize,, Z W' x;— ;)
i=1

subject to ||w||% < u



Questions?
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