Simple variable selection:
LASSO for sparse regression
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Sparsity WL =argmin Yy (y; — szw)2
=1

= Vector w is sparse, if many entries are zero



Sparsity WL =argmin Yy (y; — LI};-F’(U)2
1=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w
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SparSity Wrg = arg minz (yi — zr

=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

How do we find “best” subset of Heating

features useful in predicting the :xtirior materials
i : oof type

price among all possible Structure style

combinations?

w)”

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System



Finding best subset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error

> Problem?



Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as
iImportant

L ots of other variants, too.



Finding best subset: Reqgularize

Ridge regression makes coefficients small

n
~ . 2
Wyridge — al'g mu%nz (yz — x;rw) T )\H’UJH%
1=1
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Finding best subset: Reqgularize

Ridge regression makes coefficients small

n

~ . 2

Wridge — al'g mu%nz (yz - x?w) + )\HU)H%
1=1
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Thresholded Ridge Regression

n
~ . 2
Wridge — arg mul,nz (yz - sz’LU) T )\HwH%
1=1

Why don’t we just set small ridge coefficients to 07?
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Thresholded Ridge Regression

n
~ . 2
Wridge — arg mul)nz (yz - szw) T )‘HwH%
1=1

Consider two related features (bathrooms, showers)
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Thresholded Ridge Regression

n
~ . 2
Wridge — al'g mul)nz (yz — szw) + )‘HwH%
1=1

What if we didn’t include showers? Weight on bathrooms increases!
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Can another regularizer perform selection automatically?



Recall Ridge Regression

= Ridge Regressmn objective: 5
wmdge — arg mln Z o [E?’LU) T )‘HwH%
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Ridge vs. Lasso Regression

= Ridge Regressmn objective:
T

2
Wridge = arg mlnz —xjw)” 4+ NJw||3
1=1
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= Lasso objective: n




Example: house price with 16 features

test error is red and train error is blue
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1. choose A based on cross validation error

2. keep only those features with non-zero (or not-too-small)
parameters in w at optimal A

3. retrain with the sparse modeland A = 0



Example: piecewise-linear fit

ho(z)
* We use Lasso on the piece-wise linear example p,(z)

Step 1: find optimal A*
minimize,, L (w) + A||w||,

=1
= [z +1.1-0.14]"

Step 3: retrain

minimize,, Z£(w)
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Step 2: select features .
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A=10"8 A=10""* A=2x10"*
* de-biasing (via re-training) is critical!
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but only use selected features



Penalized Least Squares
Ridge : 7(w) = [Jw|[3 ~ Lasso : r(w) = ||w]|;

W, = arg minz (yi — x;rw)Q + Ar(w)

w
1=1



Penalized Least Squares

Ridge : r(w) = |lwll;  Lasso: r(w) = ||wl||,
W, = arg minz (yz = x;rw)Q + Ar(w)
i=1

For any 4 > 0O for which W, achieves the minimum, there exists a ¢ > 0 such that

W, = arg qujnz (yZ — x?w)z subject to r(w) < u
1=1




Why does Lasso give sparse solutions?

n
« . . T 2
minimize,, Z W' x;,—y,)
i=1

subject to |[w|l; < u

« the level set of a function £ (w,, w,) is defined

as the set of points (w;, w,) that have the same
function value

e the level set of a quadratic function is an oval

e the center of the oval is the least squares Wy
solution w,_, = Wy g




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to ||w|; < u

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
Ll ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond Vﬁ‘;z
{(Wl,Wz)‘ (Wil + 1wy | <}

« when y is large enough such that [[Ww, - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| |||, < u} —>



Why does Lasso give sparse solutions?

n
« . . T 2
minimize,, Z W' x;,—y,)
i=1

subject to |[w|l; < u

As 1 decreases (which is equivalent to

increasing regularization) the feasible set
(blue diamond) shrinks

The optimal solution of the above
optimization is

feasible set: {w € R? | Wil Lu}—>




Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

For small enough 1, the optimal solution
becomes sparse

This is because the L-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

feasible set: {w € R?| ||w||, < u} —>




Penalized Least Squares

Lasso regression finds sparse solutions, as L;-ball is “pointy”

Ridge regression finds dense solutions, as L,-ball is “smooth”
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n n
C e . T 2 < v - T 2
minimize,, E (w X; — y,-) minimize,, Z,(W X — )’i)
i=1 i=1

subject to ||w|l, < u subject to ||w||§ < u



Questions?



