Simple variable selection: LASSO for sparse regression

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Vector w is sparse, if many entries are zero

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(w) = 100 Billion, each prediction $w^T x$ is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w

$$\widehat{y}_i = \widehat{w}_{LS}^{\top} x_i = \sum_{j=1}^d x_i [j] \widehat{w}_{LS}[j]$$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

 How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
floors

Flooring types
Parking type
Parking amount
Cooling
Heating

Exterior materials Roof type

Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub

Deck

Lawn

Garden

Fenced Yard

Sprinkler System

Finding best subset: Exhaustive

- > Try all subsets of size 1, 2, 3, ... and one that minimizes validation error
- > Problem?

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

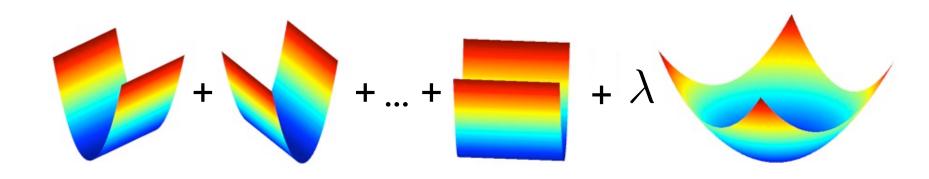
In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Finding best subset: Regularize

Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

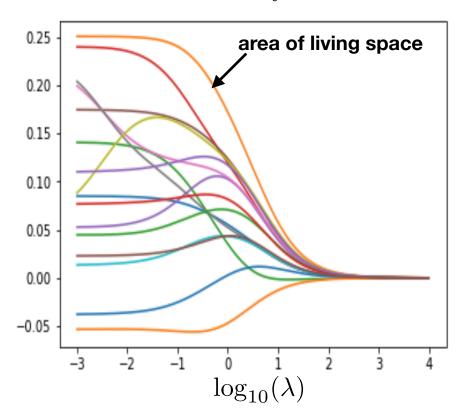


Finding best subset: Regularize

Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

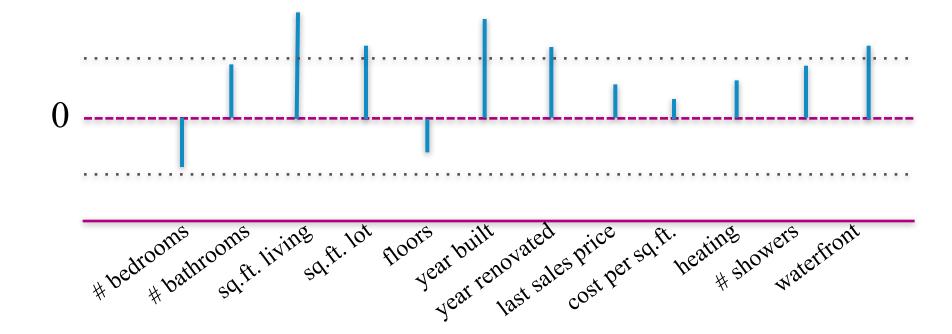
$$w_i$$
's



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

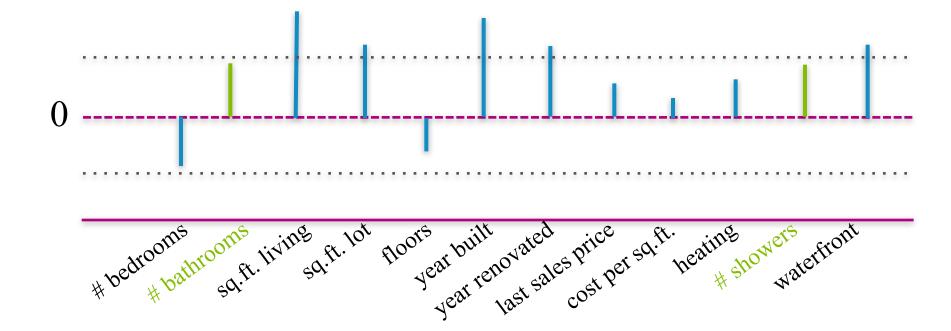
Why don't we just set small ridge coefficients to 0?



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

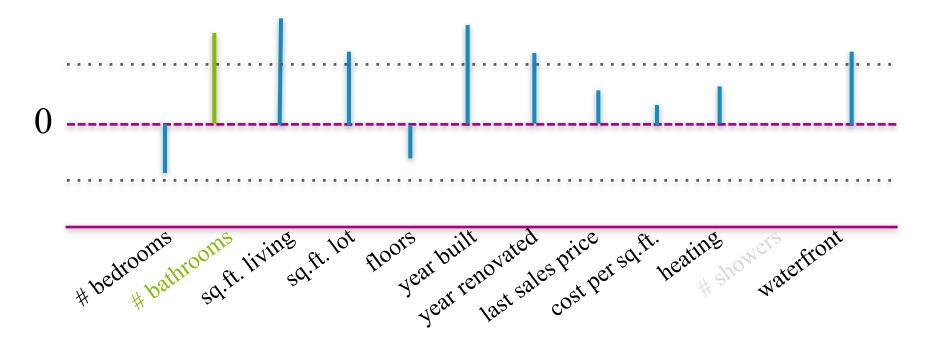
Consider two related features (bathrooms, showers)



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

What if we didn't include showers? Weight on bathrooms increases!



Can another regularizer perform selection automatically?

Recall Ridge Regression

- Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_2^2$ $+ \dots + \dots + \lambda$

$$||w||_p = \left(\sum_{i=1}^d |w|^p\right)^{1/p}$$

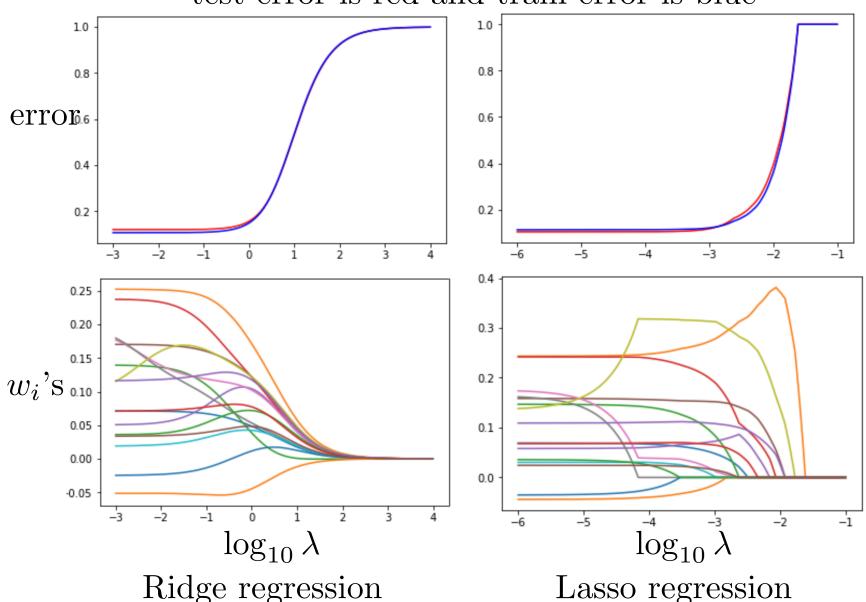
Ridge vs. Lasso Regression

- Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_2^2$ + ... + λ

- Lasso objective:
$$\widehat{w}_{lasso} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_1$$

Example: house price with 16 features

test error is red and train error is blue



Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. choose λ based on cross validation error
 - 2. keep only those features with non-zero (or not-too-small) parameters in w at optimal λ
 - 3. **retrain** with the sparse model and $\lambda = 0$

Example: piecewise-linear fit

We use Lasso on the piece-wise linear example

$$h_0(x) = 1$$

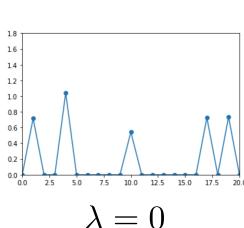
 $h_i(x) = [x + 1.1 - 0.1i]^+$

Step 1: find optimal
$$\lambda^*$$
 Step 3: retrain minimize W $\mathcal{L}(w) + \lambda \|w\|_1$ minimize W $\mathcal{L}(w)$

de-biasing (via re-training) is critical!

Step 3: retrain





but only use selected features

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)$$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

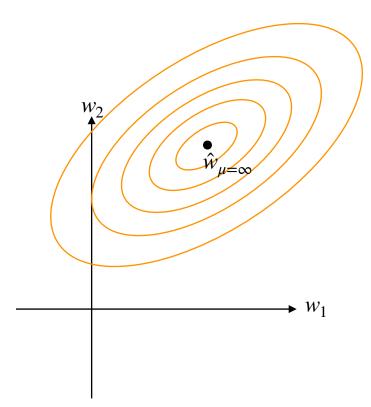
$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

For any $\lambda \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu \geq 0$ such that

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{\infty} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \mu$

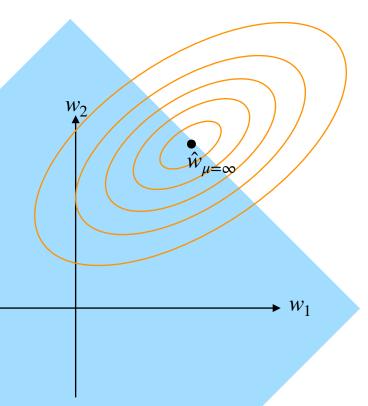
minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- the **level set** of a function $\mathcal{L}(w_1, w_2)$ is defined as the set of points (w_1, w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{\mu=\infty}=\hat{w}_{\mathrm{LS}}$



minimize_w
$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$
subject to $||w||_{1} \le \mu$

- as we decrease μ from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{ (w_1,w_2) \,\middle|\, |w_1| + |w_2| \le \mu \right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution



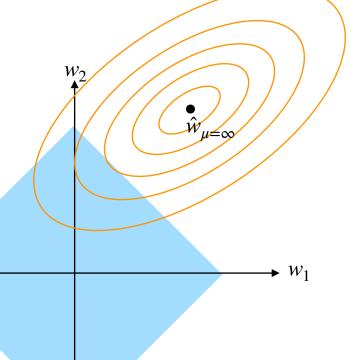
feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

• As μ decreases (which is equivalent to increasing regularization) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is

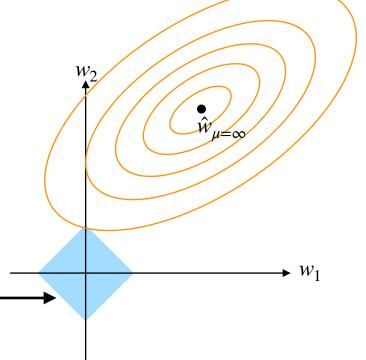


feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$ —

$$\operatorname{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

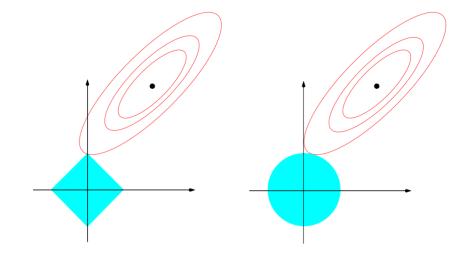
- For small enough μ , the optimal solution becomes **sparse**
- This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes



feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

Penalized Least Squares

- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- Ridge regression finds dense solutions, as L_2 -ball is "smooth"



$$\text{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_1 \le \mu$$

$$\text{minimize}_{w} \quad \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to
$$||w||_2^2 \le \mu$$

Questions?