$$P_{XY}(X=x,Y=y)$$

Goal: Predict Y given X

Thus far, we've been using η which is a:

- Linear functions of X
- Degree p polynomials of X
- Linear "generalization" of X

$$P_{XY}(X=x,Y=y)$$

Goal: Predict Y given X

Find a function η that minimizes

$$\mathbb{E}_{XY}[(Y - \eta(X))^2] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[(Y - \eta(X))^2 | X = X] \right]$$

$$\eta(x) = \arg\min_{c} \mathbb{E}_{Y|X}[(Y-c)^{2}|X=x] = \mathbb{E}_{Y|X}[Y|X=x]$$

Thus:

Under LS loss, optimal predictor: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$

Optimal Prediction

$$\mathbb{E}_{XY}[(Y - \eta(X))^2] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[(Y - \eta(X))^2 | X = X] \right]$$

Under LS loss, optimal predictor:
$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Pf: $0 = \frac{1}{dy(x)} \left[\frac{1}{(-y(x))^2} \left[\frac{1}{x=x} \right] \right]$

$$= \frac{1}{dy(x)} \left[\frac{1}{dy(x)} \left(\frac{1}{(-y(x))^2} \left[\frac{1}{x=x} \right] \right]$$

$$= \frac{1}{dy(x)} \left[\frac{1}{y(x)} \left(\frac{1}{y(x)} \left[\frac{1}{x=x} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

$$= \frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \left[\frac{1}{y(x)} \right] \right] \right]$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for $i = 1, \dots, n$ S(Kinyi)/i=,

=) only estimate G(K)

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Ideally, we want to find: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x] \qquad \qquad \text{(i) linear}$ But we only have samples: $(x_i,y_i) \overset{i.i.d.}{\sim} P_{XY} \quad \text{for } i=1,\ldots,n \qquad \text{(3) degree polymorphism}$ and are restricted to a function class (e.g., linear) so we compute: $\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \qquad \text{(4) Performance}$

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

We care about future predictions: $\mathbb{E}_{XY}[(Y-\widehat{f}(X))^2]$

Q: is f a random or deterministro

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for i = 1, ..., n

and are restricted to a function class (e.g., linear) so we compute:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

E 1/ E0[(FB(x))(B(K)-JO(x))[K=K) = EXX((Y-800) (E0(800-7600))X2) **Bias-Variance Tradeoff** $D = \left\{ \left(X_{i,y_{t}} \right) \right\}_{j=1}^{n} \left(X_{i,y_{t}} \right)$ me knon new $\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$ $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$ unt we care I xy [(1-f(x))] => Exy [ED(Y-7,(Y))] = Ex [EY|X En (Y- Fn (N))] X=X] = Ex [E (1x E) (Y-8(F)+ 8(F)-f) [K]] [X=x]

EXIX(Y)= 4(x))

= Ex (E-1x E) (Y-8(x))+2(Y-8(x)) (4(x)-f)(x)+(8(x)-f)(x) (X=x) = Ex[Exx (Y-b(x)]] + Ex[Exx Ev(y(x)-fo(x))]

Bias-Variance Tradeoff

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x] \qquad \widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$\text{Typedu (i Me evven} \text{for data} \text{for all pendent of data} \text{for any sed by stochastic}$$

Bias-Variance Tradeoff

$$\begin{array}{ll}
0: & \text{diff over } \{(x_i, y_i)\}_{i=1}^{N} \\
& \times \text{ is independent of } 0
\end{array}$$

$$\begin{array}{ll}
\eta(x) = \mathbb{E}_{Y|X}[Y|X = x] \\
& \text{for a ring of } 1
\end{array}$$

$$\begin{array}{ll}
f = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \\
& \text{fix } \text{if } i = \text{for } (y_i) \text{for } i = \text{for } (y_i) \text{for$$

 $= \underbrace{E_0 \left[\left(\mathcal{G}(K) - E_0 \left(f_0(x) + 2 \left(\mathcal{G}(K) - E_0 \left(f_0(x) \right) + 2 \left(\mathcal{G}(K) - E_0 \left(f_0(x) \right) \right) \right]}_{+ \text{ ins. Squared}} + \underbrace{E_0 \left[\left(f_0(x) \right) \right]^2 + E_0 \left[\left(f_0(x) - f_0(x) \right) - f_0(x) \right]}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(\left(f_0(x) - f_0(x) \right) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) - f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) - f_0(x) - f_0(x) - f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0(x) \right)}_{+ \text{ int. pendent}} + \underbrace{E_0 \left(f_0(x) - f_0$

$$P_{XY} = P_{XY}$$

$$P_{XY} = P$$

Bias-Variance Tradeoff

$$\begin{split} \mathbb{E}_{Y|X}[\mathbb{E}_{\mathcal{D}}[(Y-\widehat{f}_{\mathcal{D}}(x))^2]\big|X=x] &= \underline{\mathbb{E}_{Y|X}[(Y-\eta(x))^2\big|X=x]} \\ & \text{irreducible error} \\ &+ (\eta(x) - \mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\widehat{f}_{\mathcal{D}}(x)] - \widehat{f}_{\mathcal{D}}(x))^2] \end{split}$$

bias squared

variance

move complex model

Small bias

f = argmin = [f(K)-4]²

tt f

= j \times J

less complet

If we re-drew our data, what the LS training error estimator look like for generalized linear functions in small p/large p dimensions?

How many points do I use for training/testing?

- > Very hard question to answer!
 - Too few training points, learned model is bad
 - Too few test points, you never know if you reached a good solution
- > Bounds, such as Hoeffding's inequality can help:

$$P(||\widehat{\theta} - \theta^*| > \epsilon) < 2e^{-2N\epsilon^2}$$

- > More on this later the quarter, but still hard to answer
- > Typically:
 - If you have a reasonable amount of data 90/10 splits are common
 - If you have little data, then you need to get fancy (e.g., bootstrapping)