
Statistical Learning

PXY (X = x, Y = y)

Goal: Predict Y given X

EXY [(Y � ⌘(X))2]
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Thus far, we’ve been using η which is a: 
- Linear functions of X 
- Degree p polynomials of X 
- Linear “generalization” of X

Find a function η that minimizes
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Statistical Learning

PXY (X = x, Y = y)

Goal: Predict Y given X

EXY [(Y � ⌘(X))2] = EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

⌘(x) = argmin
c

EY |X [(Y � c)2|X = x] = EY |X [Y |X = x]

Under LS loss, optimal predictor: ⌘(x) = EY |X [Y |X = x]
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Find a function η that minimizes

best optimal predictor

Thm



Optimal Prediction

EXY [(Y � ⌘(X))2] = EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

Under LS loss, optimal predictor: ⌘(x) = EY |X [Y |X = x]
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Statistical Learning

x

y

PXY (X = x, Y = y) Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

⌘(x) = EY |X [Y |X = x]
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Statistical Learning

x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

We care about future predictions: EXY [(Y � bf(X))2]

⌘(x) = EY |X [Y |X = x]
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F predictorclass

linear
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degreeppoly
generalizedlinea
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Statistical Learning

x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

ED[ bf(x)]
bf = argmin

f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2⌘(x) = EY |X [Y |X = x]
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If we re-drew our data, what the LS training error  
estimator look like for generalized linear functions  
in small p/large p dimensions?

Bias-Variance Tradeoff

bias squared

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]
irreducible error

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [(Y � ⌘(x))2

��X = x]
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How many points do I use for training/testing?

> Very hard question to answer!
– Too few training points, learned model is bad
– Too few test points, you never know if you reached a good solution

> Bounds, such as Hoeffding’s inequality can help:

> More on this later the quarter, but still hard to answer
> Typically:
– If you have a reasonable amount of data 90/10 splits are common 
– If you have little data, then you need to get fancy (e.g., 

bootstrapping) 


