Generalized Linear Regression and Bias-Variance Tradeoff

Process

Collect a data set

Decide on a model

Find the function which fits the data best

Choose a loss function

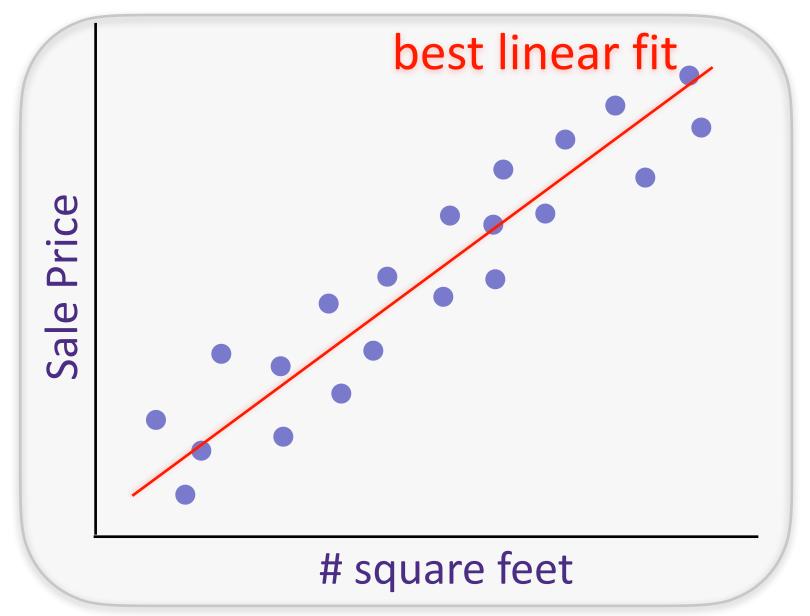
Pick the function which minimizes loss on data

Use function to make prediction on new examples

Given past sales data on zillow.com, predict:

```
y = House sale price from
```

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



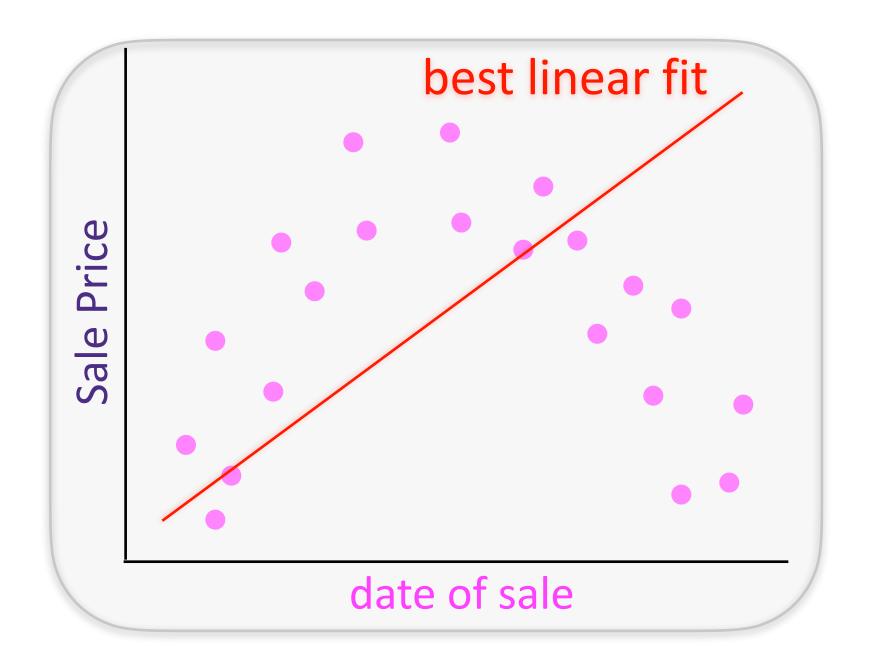
Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Loss:

Given past sales data on <u>zillow.com</u>, predict:

```
y = House sale price from
```

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$

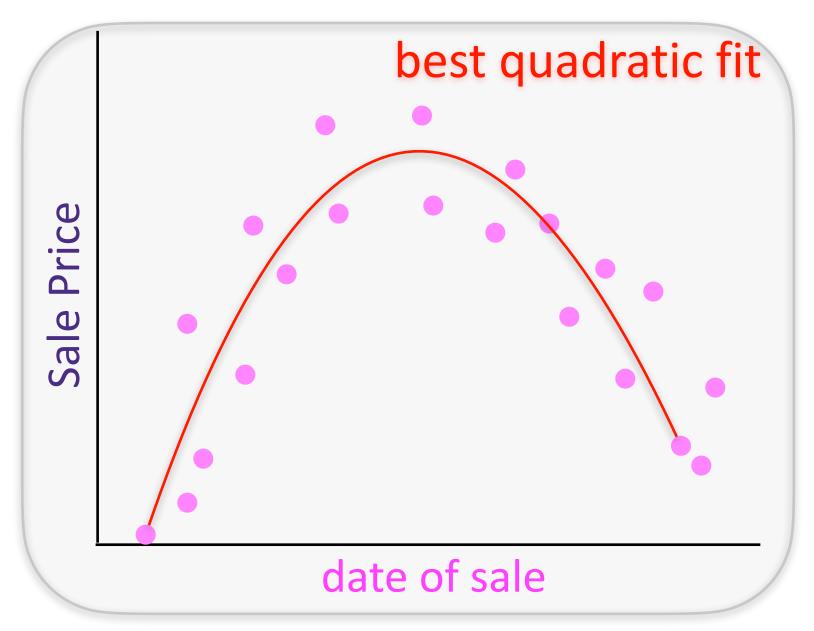


Quadratic Regression

Given past sales data on <u>zillow.com</u>, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



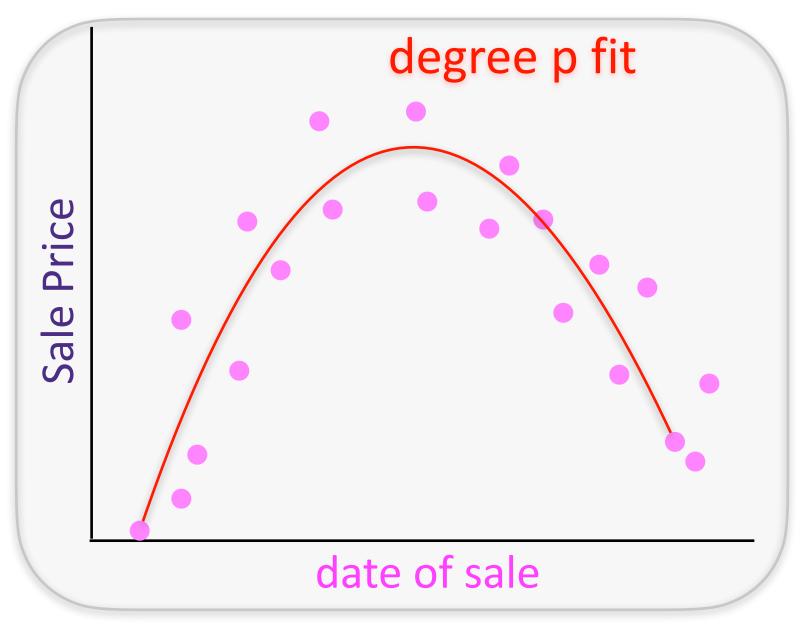
Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Polynomial regression

Given past sales data on zillow.com, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



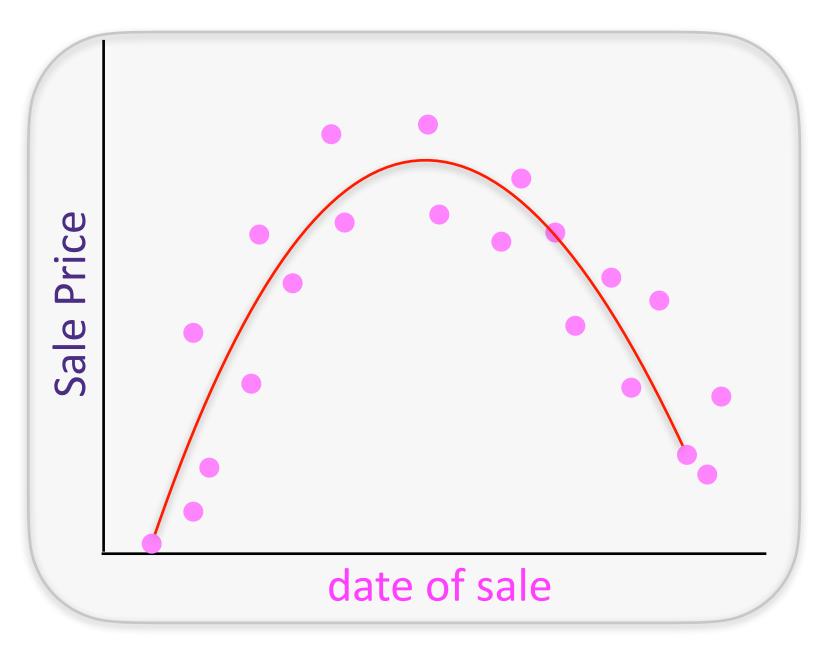
Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

Generalized linear regression

Given past sales data on zillow.com, predict:

y = House sale price from

 $x = \{ \text{# sq. ft., zip code, date of sale, etc.} \}$



Training Data: $x_i \in \mathbb{R}^d$ $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$ Hypothesis:

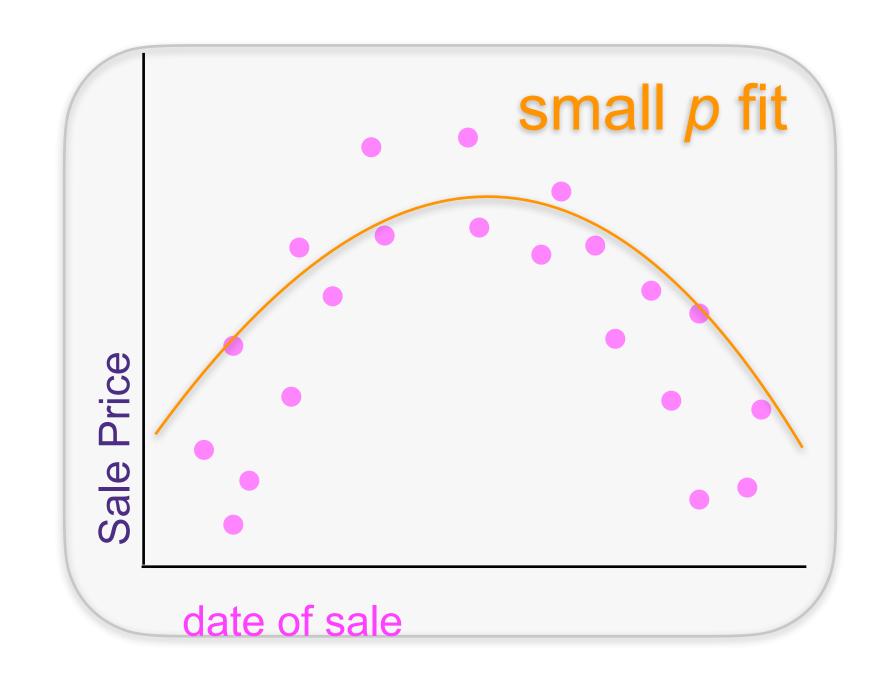
Generalized Linear Regression

Training Data:
$$x_i \in \mathbb{R}^d$$
 Hypothesis: $\{(x_i,y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$

Transformed data:

Loss:

Training Data:
$$x_i \in \mathbb{R}^d$$
 $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$



Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

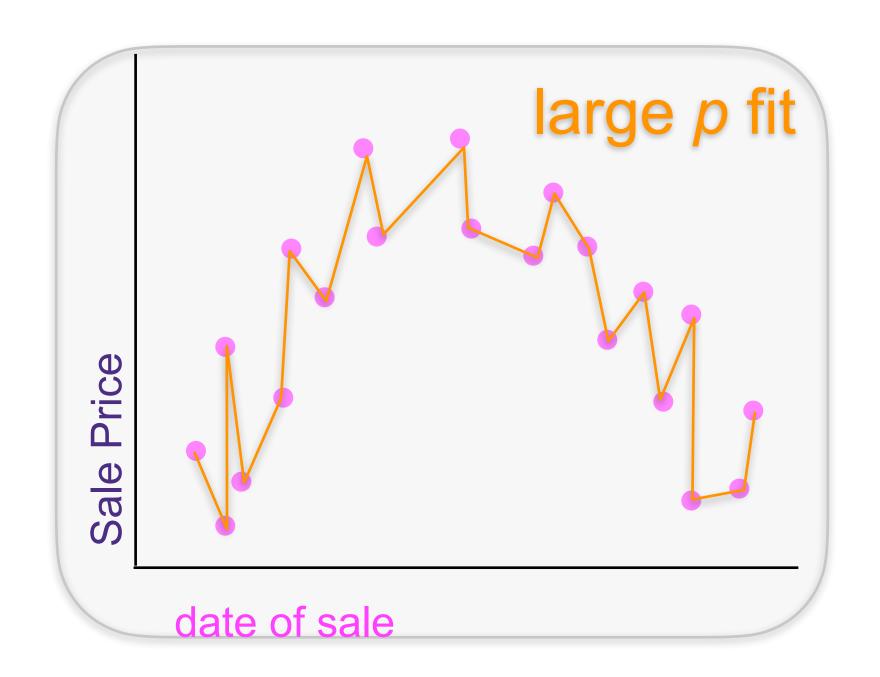
Hypothesis: linear in h

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

Loss: least squares

$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Training Data:
$$x_i \in \mathbb{R}^d$$
 $\{(x_i, y_i)\}_{i=1}^n$ $y_i \in \mathbb{R}$



Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

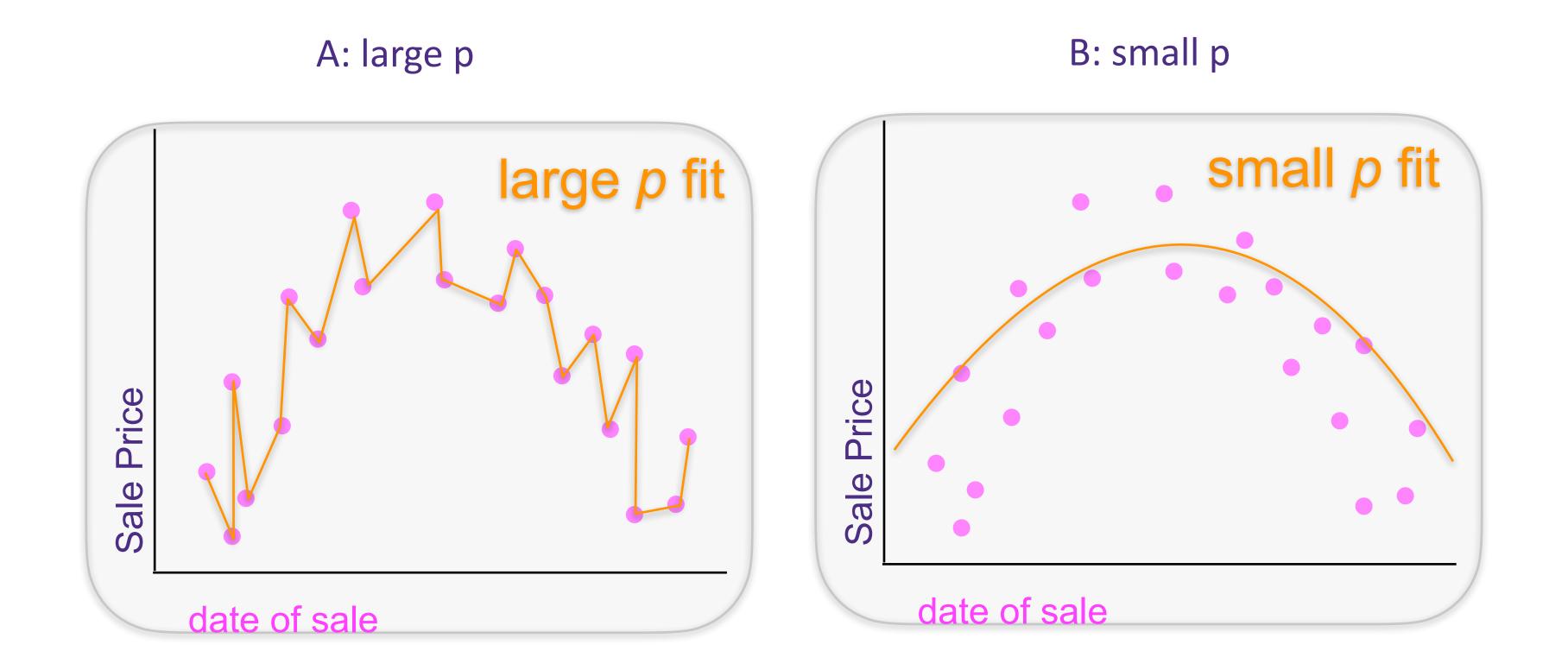
Hypothesis: linear in h

$$y_i \approx h(x_i)^T w \quad w \in \mathbb{R}^p$$

Loss: least squares

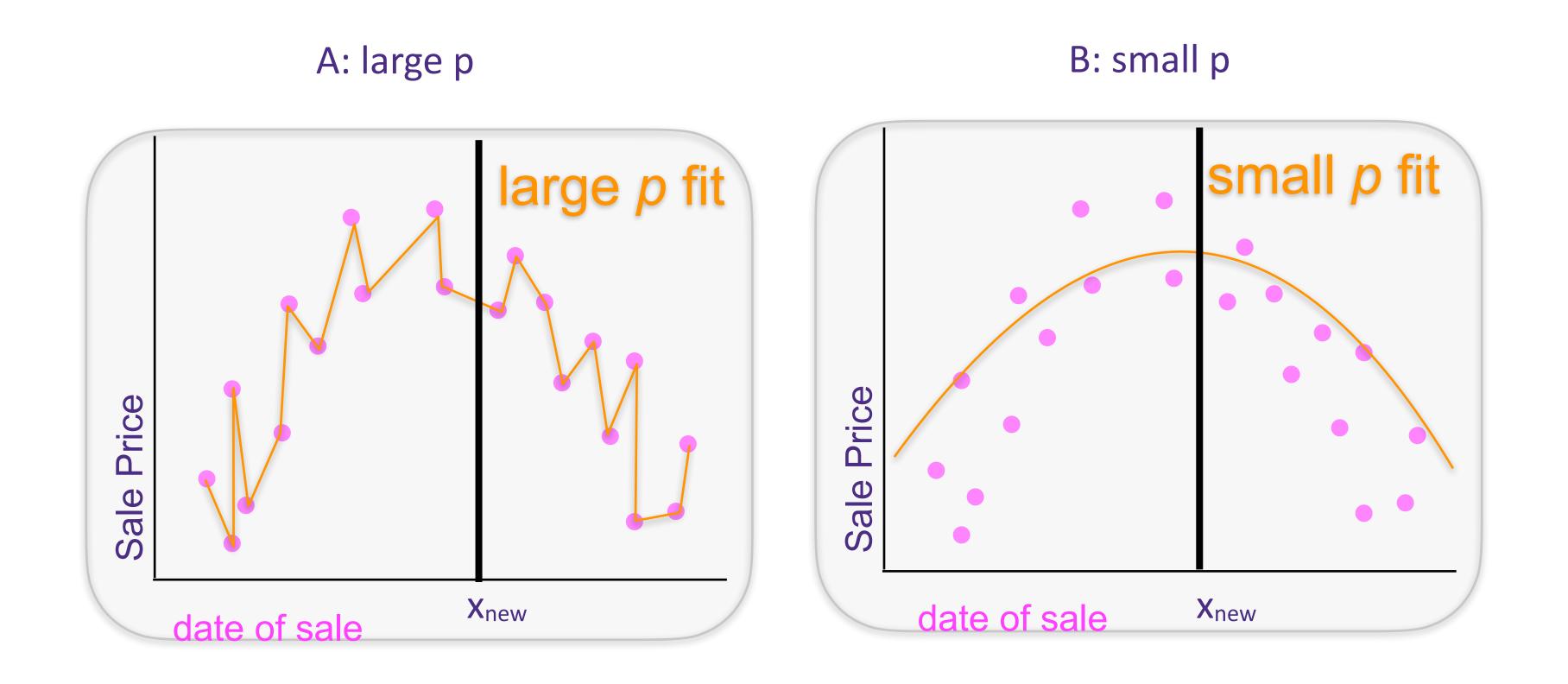
$$\min_{w} \sum_{i=1}^{n} \left(y_i - h(x_i)^T w \right)^2$$

Which is better?



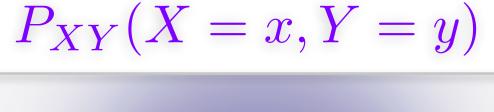
What is our goal, anyway?

Predicting sale price for a new house: A vs B



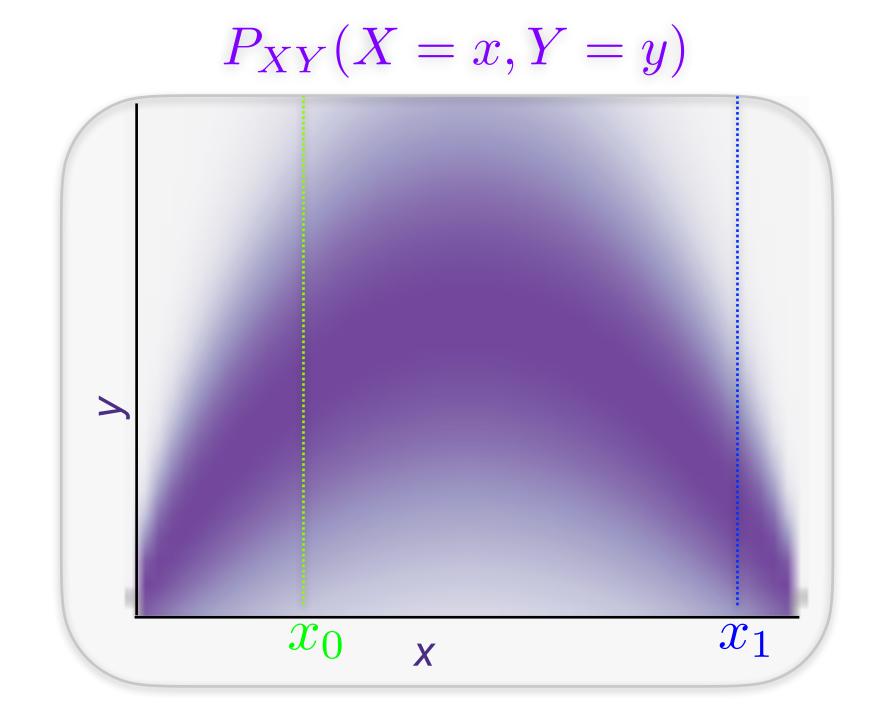
Our goal is to predict prices for new houses that "look like" the houses in our training data

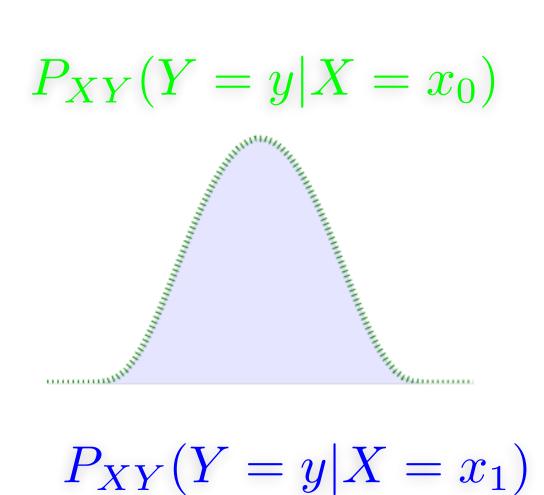
What do we mean by "look like"?

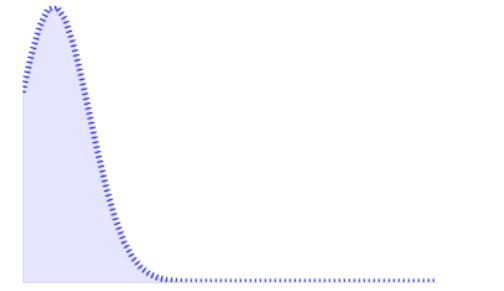


On *average* over a house drawn from this distribution, we want to make a good prediction.

Goal: predict future sale prices







Statistical Learning

$$P_{XY}(X=x,Y=y)$$

Goal: Predict Y given X

Find a function η that minimizes

$$\mathbb{E}_{XY}[(Y - \eta(X))^2]$$

Thus far, we've been using η which is a:

- Linear functions of X
- Degree p polynomials of X
- Linear "generalization" of X in p dimensions