
Trees

Trees

Build a binary tree, splitting along axes

adaptive

indicator

decisionWee ul 2b
d

5 44th l

c a G
42 4

ca g't
a

Tv

> Start from empty decision tree
> Split on next best attribute (feature)

– Use, for example, information gain to select attribute
– Split on

> Recurse
> Prune

Learning decision trees Nihil YiCHit

gxfi.milihgYit4 veal valuedvena

Categorical

El M eTtopy condita 144

l

i

Trees

• Trees

• have low bias, high variance
• deal with categorial variables

well

• intuitive, interpretable

• good software exists

• Some theoretical guarantees

Tissues

Random Forests

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating

mm

general idea

Random Forests

m~p/3

m~sqrt(p)

glximilli
13 total of trees x C I

with replacement

un.in

m

TE

Random Forests

• Random Forests

• have low bias, low variance
• deal with categorial variables well

• not that intuitive or interpretable

• Notion of confidence estimates

• good software exists

• Some theoretical guarantees

• works well with default hyperparameters

Boosting and Additive
Models

Boosting

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

• 2001 Friedman: “Practical for arbitrary losses”

• 2014 Tianqi Chen: “Scale it up!” XGBoost

learning
Theory
question

Stumy q error 970

Additive models

• Given:

• Generate random functions:

• Learn some weights:

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

bw = argmin
w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

Additive models

• Given:

• Generate random functions:

• Learn some weights:

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . , b�t = arg min
w,�1,...,�p

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard

X

ft E classiter Iast

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

ft CH

fixed M

th Nk Z G basra
by I

r

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

AdaBoost: b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))

r

aefh.nlh r4

exponential loss

THE 2 em bairn

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2

C

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!

Vim residual

Additive models

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

• Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

Bagging versus Boosting

• Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

• Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

Which algorithm do I use?

multivariate adoptreregression spline

9

I

e

