Trees

Trees

) adm(\’iﬂ/e
St @1
M Build a binary tree, splitting along axes
f(@)=) cml(z € Rp).
m=1
Aecrsiv ‘WQQ\\)
X1
C
(1 Rj
X2 <t2 X R CS
Y2 Y
X2 <ty t2 Ry
Ry Ro R3 |/‘_‘ C
R
R4 Rs

f(\(\,%JfN AET

Learnin ision tr
earning decisio tees\v'lg\q el it e _oolvel
5@1, Y7 " O(magm(ﬁl
> Start from empty decision tree —_

> Split on next best attribute (feature) (PV“/‘ 2
Use, for example, information gain to select attribute
Split on arg mzag(llG(X i) =argmax H(Y) — H(Y | X;)
> Recurse all WPT Couditind GrtY
> Prune X<t

dQ((f ’X <t X1 <t

0 \/I)(’”‘ QW"W\K&/

Trees

M
f(@)=) cml(z € Rp).

* Trees

* have low bias, high variance

* deal with categorial variables
well C w;u(,ﬁ/“

—

* intuitive, mterpretable

« good software exists

—

« Some theoretical guarantees

~

Random Forests

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to
T ” [
construct a lot of “lightly correlated L
w\/—\——w\ 1o
trees and average them: 0
— M bes
x2<0.285
76%6%(Vdeo ol
“Bagging:” Bootstrap aggregating

]
Random Forests i (Yirf) ;o“v/ :
g, tofal f § tvey G ER

Algorithm 15.1 Random Forest for Regression or Classification.

1. For b=1 to B: wl(f” (,p(j a[mw:‘(
a) Draw a bootstrap sample Z* of size N from the training data. I/MMJM’!J/
DOLe ap ha by

(
. (b) Grow a random-forest tree T} to the bootstrapped data, by re-
\41\79"4;— cursively repeating the following steps for each terminal node of

the tree, until the minimum node size n,;, is reached.
———— .

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {7} }¥.

To make a prediction at a new point z:

—_
Classification: Let ijm! be the class _prediction of the bth random-forest

—

Regression: f (:1:) 5 Zb 1Tb(:zc) 7

tree. Then C’ i (z) = majomty vote {Cb(x)}B

—

~———

Random Forests

e Random Forests

 have low bias, low variance

———

N —

 deal with categorial variables well
///\

—

 not that intuitive or interpretable
- —

* Notion <;f confidence estimates

« good software exists
« Some theoretical guarantees

 works well with default hyperparameters

\

Boosting and Additive
Models

Boosting [ewn g
Teors

wf’ﬂ’”

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 — ~ S(’UM} G ey 299

* 1990 Robert Schapire: “Yup!”
» 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tianqgi Chen: “Scale it up!” XGBoost

Additive models

o Given: {(@i, ¥l 2, e Ry € {-1,1}
 Generate random functions: ¢, :R* =R ¢t=1,...,p

n p
* Learn some weights: & = are min » Loss (yi,Zwt(bt(xi)>
1=1 t=1

 Classify new data: f(z) = sign (Z @tqbt(x))

Additive models

Given: {(zi,vi)}ie1 z e RYy; € {—1,1}
Generate ran?}{m functions: ¢, :R* >R ¢t=1,...,p

n p
Learn some weights: & = arg min » Loss (yi,Zwtgbt(xi)>
=1 t=1

Classify new data: f(z) =sign (Z @@(w))
b€ duxr A

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

—_—

— ————

n P
0,1, 6 =arg min Y Loss <yi,2wt¢t<xi>>
Pl t=1

is in general computationally hard

Forward Stagewise Additive models
¢¢ (X

b(x,y) is a function with parameters -y Examples: b(z,7) = . 1 _
+e 7T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(x’ 7) - '711{333 < '72}
1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute j’/X o (a /]/[
N =5 -
(BmsYm) = argminZL(yi,fm_l(xi) + Bb(zi;7))- j/l/l (\()-— Z I&’b .%x]%')
A i3 - Iy~ |

(b) Set fm(z) = fm—1(x) + Bmb(z; Ym).

Idea: greedily add one function at a time

Forward Stagewise Additive models

: . . 1
b(x,y) is a function with parameters -y Examples: b(z,7) = —————
l4+e 72
Algorithm 10.2 Forward Stagewise Additive Modeling. b Lm%}
1. Initialize fo(z) = 0. —_—

2. Form = 1 to M: (ﬁ//Y/)/ (ﬂL/V)’/ oo

(a) Compute
N
(/Bm, 7m) = arg rgl’ynz L(yi, fm—l (xz) + ﬁb(l‘,, 7))
=1 — —)

(b) Set fm,(x) = fm,—l(m) +,B7nb(x;77n)-

Idea: greedily add one function at a time

AdaBoost: p(z,v): classifiers to {—1,1}
’_/__/
L(y, () = exp(=p/(@)) g onestd 4%

-~

TH= T b H(Ry Y]

——

Forward Stagewise Additive models

b(x,y) is a function with parameters -y Examples: b(z,7) = ;T
l+e e
Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l? 7) _ ’711{5133 < ,72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = arg%l{leL(yi, fm—1(zi) + Bb(zi;7))-
=1

(b) Set fm(x) = fm—l(x) ‘*‘ﬁmb(x;'ym)'

Idea: greedily add one function at a time

Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(z,~): regression trees
]

Forward Stagewise Additive models

b(x,7) is a function with parameters v Examples: b(z,7) = 1%
+e 7 ®
Algorithm 10.2 Forward Stagewise Additive Modeling. b(:U, fy) — 71]_{3;3 < 72}
1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(Brm>¥m) = argr;,l?ZL(yi, Frm—1(z:) + Bb(zi;7)).
=1
(b) Set fm(z) = fm-1(z) + Bmb(z; ¥m). V)'Wn,‘ 8! «9010/
Idea: greedily add one function at a time
Boosted Regression Trees: Ly, f(z)) = (y — f(:c))2
L(yiy fm—-1(zi) + Bb(zi37)) = (¥ — frm—-1(i) — ﬂb(mz‘;’Y))z
= (Zn - :Bb(-’fz‘;’)’))za Tim = Yi — fm—1(:)

Efficient: No harder than learning regression trees!

Additive models

» Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

» Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

—~—~———————o
——

—

Bagging versus Boosting

« Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

« Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

Which algorithm do | use?

TABLE 10.1. Some characteristics of different learning methods. Key: A= good, YVIM(’
=fair, and ¥ =poor. A RN AMI‘M 5% VST
Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A
/@ input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

\ Interpretability v v A v

Predictive power A/ A v A

