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Trees

Build a binary tree, splitting  along axes

adaptive

indicator

decisionWee ul 2b
d

5 44th l

c a G
42 4

ca g't
a

Tv



> Start from empty decision tree
> Split on next best attribute (feature) 

– Use, for example, information gain to select attribute
– Split on 

> Recurse
> Prune
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Trees

• Trees 

• have low bias, high variance 
• deal with categorial variables 

well 

• intuitive, interpretable 

• good software exists 

• Some theoretical guarantees 

Tissues



Random Forests



Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to 
construct a lot of “lightly correlated” 
trees and average them: 

“Bagging:” Bootstrap aggregating
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Random Forests

m~p/3

m~sqrt(p)
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Random Forests

• Random Forests 

• have low bias, low variance 
• deal with categorial variables well 

• not that intuitive or interpretable 

• Notion of confidence estimates 

• good software exists 

• Some theoretical guarantees  

• works well with default hyperparameters



Boosting and Additive 
Models



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

• 2001 Friedman: “Practical for arbitrary losses” 

• 2014 Tianqi Chen: “Scale it up!” XGBoost
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Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign
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Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . , b�t = arg min
w,�1,...,�p

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard
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Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x
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Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

AdaBoost: b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))
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Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2
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Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!

Vim residual



Additive models

• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 
can also use trees! Boosting can scale. 

• Gradient boosting generalization with good software 
packages (e.g., XGBoost). Effective on Kaggle 



Bagging versus Boosting

• Bagging averages many low-bias, lightly 
dependent classifiers to reduce the variance 

• Boosting learns linear combination of high-bias, 
highly dependent classifiers to reduce error



Which algorithm do I use?
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