Trees

Trees

M Build a binary tree, splitting along axes
f(@) =) cmI(z € Rm).
m=1

Learning decision trees

> Start from empty decision tree
> Split on next best attribute (feature)
- Use, for example, information gain to select attribute
- Spliton argmaxIG(X;) =argmaxH(Y) — H(Y | X;)
> Recurse Z 7,
> Prune X<t

M
f(@)=) cmI(z € Rm).

W

Trees

M
f(x) = z cmI(z € Ry)
m=1
X1 <t
X2 < t2 X1 <tj

* Trees
 have low bias, high variance

 deal with categorial variables
well

* intuitive, interpretable
e good software exists

« Some theoretical guarantees

Random Forests

Random Forests

Tree methods have low bias but high variance.

Original Tree

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

x

o N

A

o

]

@

- @
)

“Bagging:” Bootstrap aggregating

o
o x I
2o
A
o
© w
©
&

o
o
x
o - X
n 1
o
w) 2
8
04'];

........

Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n.,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}.
To make a prediction at a new point z:
Regression: fB(x) = i 2 T(x). m-~p/3

Classification: Let Co () be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}L. m~sqrt(p)

Random Forests

 Random Forests
 have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
* Notion of confidence estimates
« good software exists
« Some theoretical guarantees

e works well with default hyperparameters

Boosting and Additive
Models

Boosting

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tiangi Chen: “Scale it up!” XGBoost

Additive models

e Given: {(@iyi)}ici x; e RYy; € {-1,1}
 Generate random functions: ¢, : R =R t=1,.

* Learn some weights: &= argmmZLoss <yz,zwt¢t z;)
1—=1

« Classify new data: f(z) =sign (Z Wy (z)

Additive models

Given: {(zi,vi)}ie1 =, e R% y; € {—1,1}

Generate random functions: ¢, : R - R t=1,..

p
Learn some weights: & = arge mmZLOSS <yz,zwt¢t s)
=1

Classify new data: f(z) =sign (Zwtcbt)

An interpretation:
Each ¢;(z) is a classification rule that we are assigning some weight w;

n p
W, ¢, ... 7§/)t = arg (bmm Z Loss <yi7 Z wt@(ﬂ?i))
WLy Pp g t—1

.....

IS in general computationally hard

Forward Stagewise Additive models

b(x,7v) is a function with parameters v Examples: b(z,7) = 1 1 _
+e 7
Algorithm 10.2 Forward Stagewise Additive Modeling. b(CE 7) _ ’711{ZC3 < /72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,¥m) = arg ’}}?Z L(i, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm—1(x) + Bmb(x;¥m).

|dea: greedily add one function at a time

Forward Stagewise Additive models

b(x,7v) is a function with parameters v Examples: b(z,7) = 1 1 _
+e 7
Algorithm 10.2 Forward Stagewise Additive Modeling. b(CE 7) _ ’711{ZC3 < /72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,¥m) = arg ’}}?Z L(i, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm—1(x) + Bmb(x;¥m).

|dea: greedily add one function at a time

AdaBoost: p(z,v): classifiers to {—1,1}
L(y, f(z)) = exp(=yf(x))

Forward Stagewise Additive models

b(x,~) is a function with parameters ~y Examples: b(z,7) = 1 _
l+e 7™
Algorithm 10.2 Forward Stagewise Additive Modeling. b(:C 7) _ ’711{553 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,¥m) = arg I}}?Z L(i, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time

Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(z,v): regression trees

Forward Stagewise Additive models

b(x,~) is a function with parameters ~y Examples: b(x,7) = . ! -
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(x7 fy) — 71]_{3;3 < 72}
1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(Brm>¥m) = arg rgigZL(yi, Frm—1(zi) + Bb(zi;7)).
=1
(b) Set fm(z) = frm—1() + Bmb(z;Ym)-
|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = (y — f(x))?
L(Yis fm—1(zi) + Bb(zi;7)) = (¥ — fm—1(zi) — :Bb(mi;7))2
= (Tim — ﬂb(wz‘;’)’))za Tim = Yi — fm—1(T:)

Efficient: No harder than learning regression trees!

Additive models

* Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

« Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle

Bagging versus Boosting

» Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

* Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

Which algorithm do | use?

TABLE 10.1. Some characteristics of different learning methods. Key: A= good,
=fair, and V¥ =poor.

Characteristic Neural SVM Trees MARS k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large NN)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A

