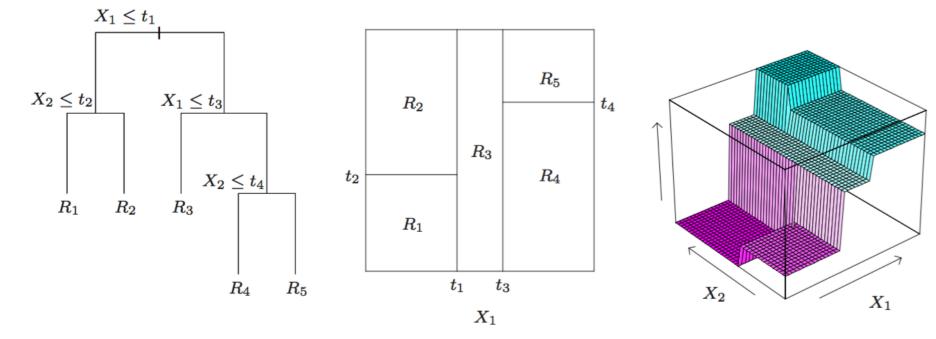
Trees

Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Build a binary tree, splitting along axes



Learning decision trees

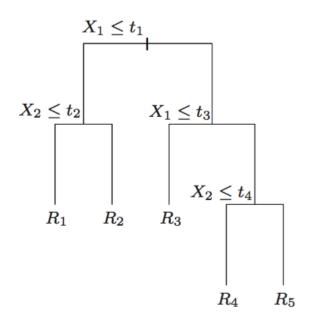
- > Start from empty decision tree
- > Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on $\underset{i}{\operatorname{arg}} \max_{i} IG(X_{i}) = \underset{i}{\operatorname{arg}} \max_{i} H(Y) H(Y \mid X_{i})$
- > Recurse
- > Prune

$$X_{1} \le t_{1}$$
 $X_{2} \le t_{2}$
 $X_{1} \le t_{3}$
 $X_{2} \le t_{4}$
 $X_{3} = 0$
 $X_{4} = 0$
 $X_{5} = 0$

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$



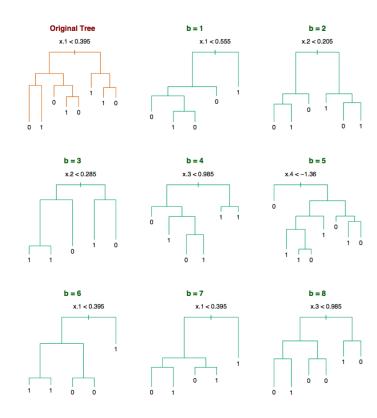
Trees

- have low bias, high variance
- deal with categorial variables well
- intuitive, interpretable
- good software exists
- Some theoretical guarantees

Tree methods have **low bias** but **high variance**.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:

"Bagging:" Bootstrap aggregating



Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
. m~p/3

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \{\hat{C}_b(x)\}_1^B$. $m\sim sqrt(p)$

- Random Forests
 - have low bias, low variance
 - deal with categorial variables well
 - not that intuitive or interpretable
 - Notion of confidence estimates
 - good software exists
 - Some theoretical guarantees
 - works well with default hyperparameters

Boosting and Additive Models

Boosting

 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):

An algorithm \mathcal{A} is a weak learner for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1,1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"
- 2014 Tianqi Chen: "Scale it up!" XGBoost

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n$ $x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$
- Classify new data: $f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n$ $x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$
- Classify new data: $f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \widehat{w}_t

$$\widehat{w}, \widehat{\phi}_1, \dots, \widehat{\phi}_t = \arg\min_{w, \phi_1, \dots, \phi_p} \sum_{i=1}^n \operatorname{Loss}\left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$$

is in general computationally hard

$$b(x,\gamma)$$
 is a function with parameters γ

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(eta_m, \gamma_m) = rg \min_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

$$b(x,\gamma)$$
 is a function with parameters γ

Examples:
$$b(x,$$

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(eta_m, \gamma_m) = rg \min_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Idea: greedily add one function at a time

AdaBoost: $b(x, \gamma)$: classifiers to $\{-1, 1\}$

$$L(y, f(x)) = \exp(-yf(x))$$

$$b(x,\gamma)$$
 is a function with parameters γ

Examples:
$$b(x, \gamma)$$

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(eta_m, \gamma_m) = rg \min_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$L(y, f(x)) = (y - f(x))^2$$

 $b(x,\gamma)$: regression trees

$$b(x,\gamma)$$
 is a function with parameters γ

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(eta_m, \gamma_m) = rg \min_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$L(y, f(x)) = (y - f(x))^2$$

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

= $(r_{im} - \beta b(x_i; \gamma))^2, \quad r_{im} = y_i - f_{m-1}(x_i)$

Efficient: No harder than learning regression trees!

Additive models

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Gradient boosting generalization with good software packages (e.g., XGBoost). Effective on Kaggle

Bagging versus Boosting

- Bagging averages many low-bias, lightly dependent classifiers to reduce the variance
- Boosting learns linear combination of high-bias,
 highly dependent classifiers to reduce error

Which algorithm do I use?

TABLE 10.1. Some characteristics of different learning methods. Key: $\triangle = good$, $\diamond = fair$, and $\nabla = poor$.

Characteristic	Neural Nets	SVM	Trees	MARS	k-NN, Kernels
Natural handling of data of "mixed" type	V	▼	A	A	V
Handling of missing values	V	V	<u> </u>	<u> </u>	
Robustness to outliers in input space	•	V	A	▼	A
Insensitive to monotone transformations of inputs	•	V	A	V	▼
Computational scalability (large N)	•	V	A	A	▼
Ability to deal with irrelevant inputs	•	V	A	A	▼
Ability to extract linear combinations of features	A	A	V	V	*
Interpretability	_	▼	*	<u> </u>	▼
Predictive power	<u> </u>	A	V	*	<u> </u>