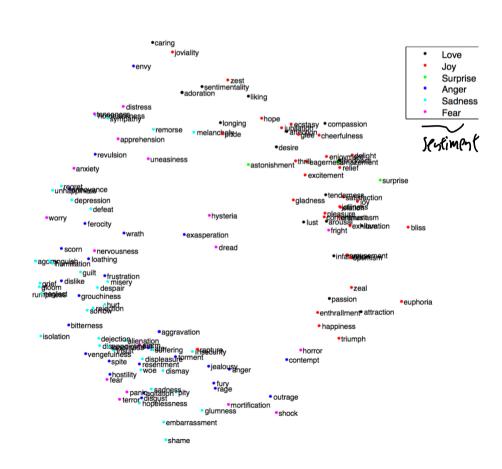
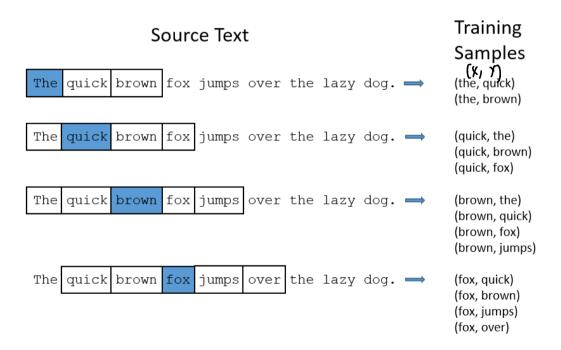
HW4: Updates on website & ed stem

Feature extraction given Text data



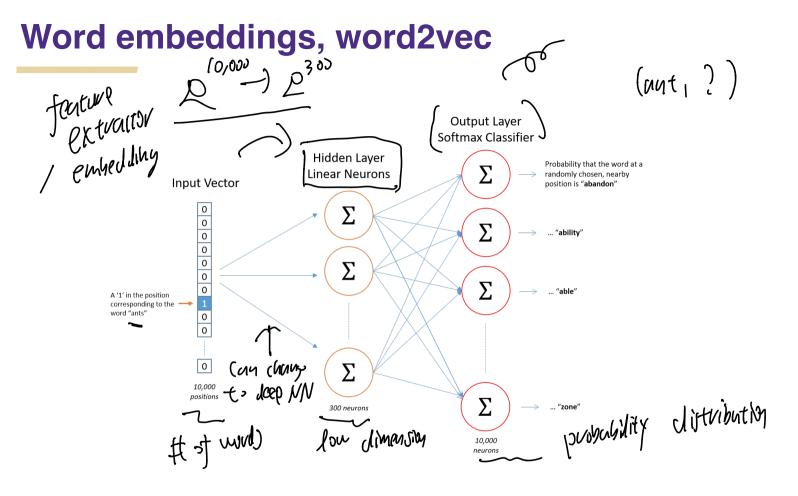
Word embeddings, word2vec


Can we **embed words** into a latent space?

This embedding came from directly querying for relationships.

word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. nytimes.com)

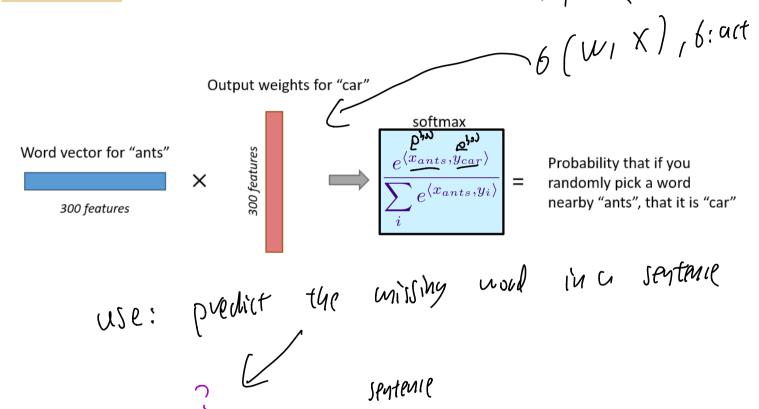
Word embeddings, word2vec


data:

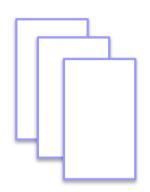
Sertial

Joan Wiki

Winews, --
Self-symbolised learning


pue-toning

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer


Word embeddings, word2vec

71: 011e - 4st W: 200 x (0,000

Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

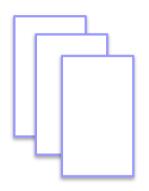
Bag of Words

n documents/articles with lots of text

padit sentiment

Questions:

- How to get a feature representation of each article?
- How to cluster documents into topics?


Bag of words model:

ith document:
$$x_i \in \mathbb{R}^D$$

$$x_{i,j} = \text{proportion of times } j \text{th word occurred in } i \text{th document}$$

$$x_{i,j} = \underbrace{x_{i,j}}_{\text{total } i \text{total } i \text{tota$$

Bag of Words

n documents/articles with lots of text

- Can we embed each document into a feature space?

Bag of words model:

ith document: $x_i \in \mathbb{R}^D$

 $x_{i,j} = \text{proportion of times } j \text{th word occurred in } i \text{th document}$

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

Nonnegative matrix factorization (NMF)

in: # st avtides topic Spart: " hashalland", $A \in \mathbb{R}^{m imes n}$ $A_{i,j} =$ frequency of jth word in document i $\lim_{W \in \mathbb{R}^{m imes d}_+, H \in \mathbb{R}^{n imes d}_+} \|A - W H_{\mathbf{b}}^T\|_F^2 \ \mathbf{p}$ **Nonnegative Matrix factorization:** d is number of topics J frequencies if words six each +spi(Each column of H represents a cluster of a topic, Each row W is some weights a combination of topics 30% sport, 20% autille Also see latent Dirichlet factorization (LDA)

BERT

2019

data: will Mriked used usulding - XX

feature Output Probabilities Softmax Linear Add & Norm Feed Forward 8 encodny Add & Norm decoding Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embeddina Outputs Inputs (shifted right)

Feature extraction given sequential data

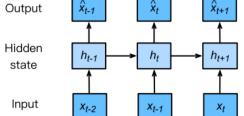
 $x_t \in \mathbb{R} : AAPL stock$ price at time t

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$

Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

$$\approx p(x_{t+1}|x_t, h_{t+1})$$
Markov purperty
Velated up infuner Learning

 $x_t \in \mathbb{R} : AAPL stock$ price at time t


 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

$$\approx p(x_{t+1}|x_t, h_{t+1})$$

$$h_{t+1} = g(h_t, x_t) \xrightarrow{h_0 \text{ is Knum}} h_0 \text{ is Knum}$$

Hidden state and g never observed, but learned!

 $x_t \in \mathbb{R} : AAPL stock$ price at time t

nt Pd A: dxd, B: dx1 C: 1xd, D: 1x1

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$ h. $q^{\nu \rho_{\eta}}$

 $h_{t+1} = g(h_t, x_t)$ frodit Keel given kin the

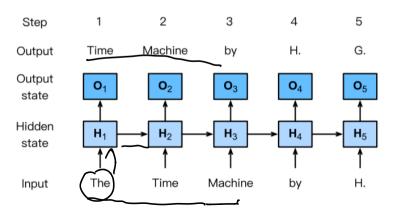
 $pprox p(x_{t+1}|x_t,h_{t+1})$ $q x_0 \dots x_n$

Hidden state Input

Output

Explicit:

Hidden state and g never observed, but learned!


/ Ktri = [Xtri] hilder the dynamics $h_{t+1} = \overset{\uparrow}{\sigma}(Ah_t + Bx_t)$ with $\sum_{t=0}^{\infty} (x_t - \hat{x}_t)^2$ for the property $\hat{x}_{t+1} = Ch_{t+1} + Dx_t$

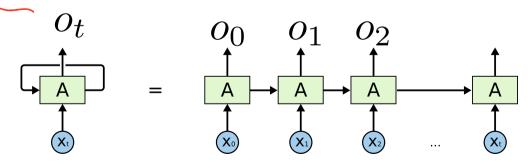
Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Model also works with text!



Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Recurrent Neural Network

