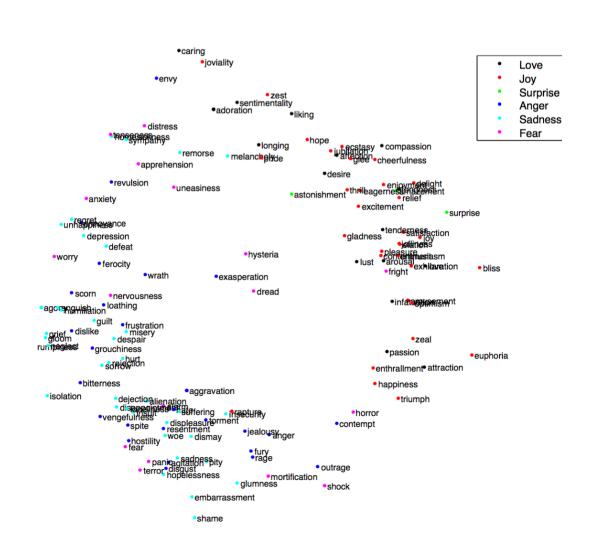
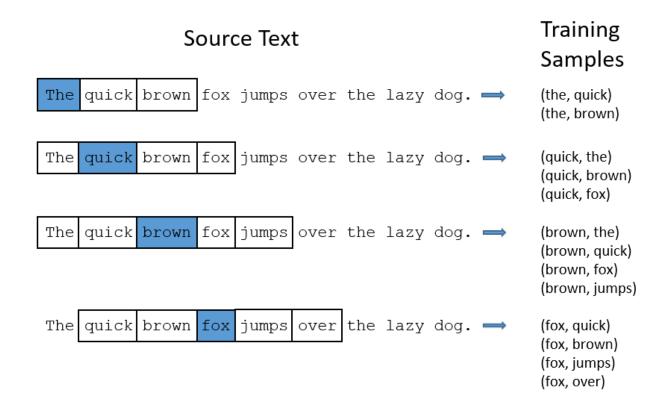
Feature extraction given Text data

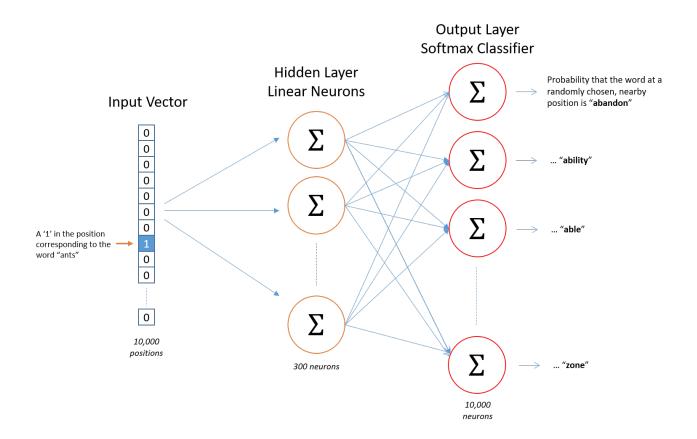
Can we **embed words** into a latent space?

This embedding came from directly querying for relationships.

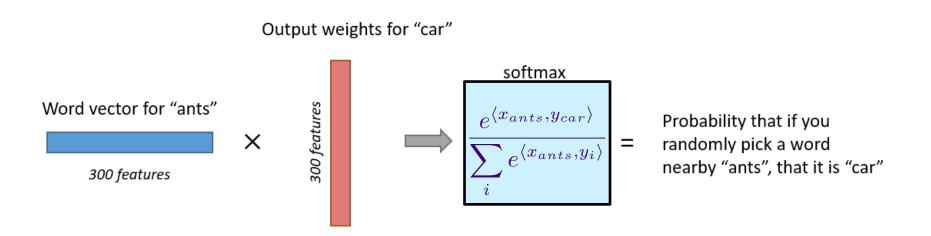
word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. nytimes.com)





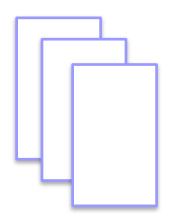


Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer



Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

Bag of Words



n documents/articles with lots of text

Questions:

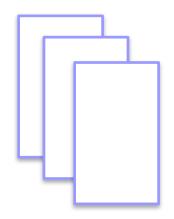
- How to get a feature representation of each article?
- How to cluster documents into topics?

Bag of words model:

ith document: $x_i \in \mathbb{R}^D$

 $x_{i,j}$ = proportion of times jth word occurred in ith document

Bag of Words



n documents/articles with lots of text

- Can we embed each document into a feature space?

Bag of words model:

ith document: $x_i \in \mathbb{R}^D$

 $x_{i,j}$ = proportion of times jth word occurred in ith document

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

Nonnegative matrix factorization (NMF)

$$A \in \mathbb{R}^{m \times n}$$
 $A_{i,j}$ = frequency of jth word in document i

Nonnegative Matrix factorization:

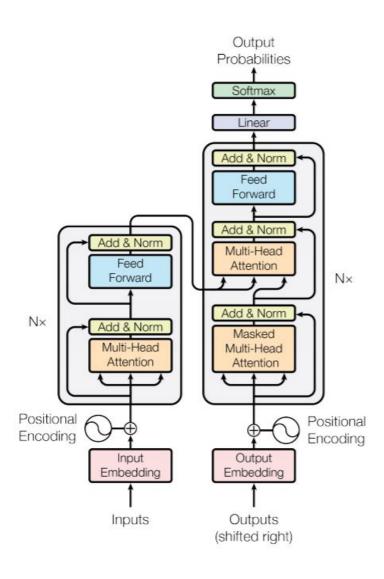
$$\min_{W \in \mathbb{R}_+^{m \times d}, H \in \mathbb{R}_+^{n \times d}} \|A - WH^T\|_F^2$$

d is number of topics

Each column of H represents a cluster of a topic, Each row W is some weights a combination of topics

Also see latent Dirichlet factorization (LDA)

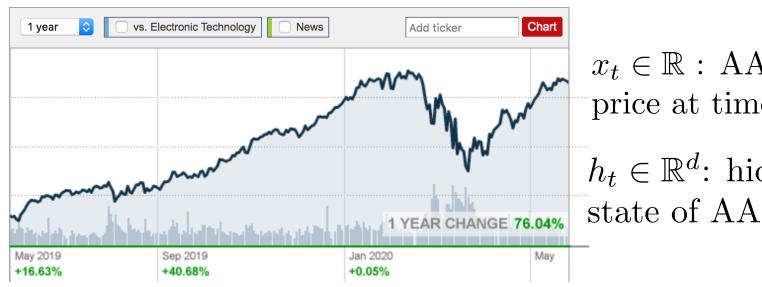
BERT



Feature extraction given sequential data

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$



 $x_t \in \mathbb{R} : AAPL stock$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

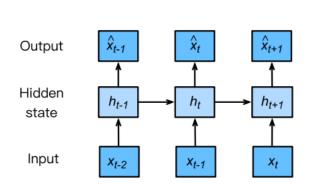
Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

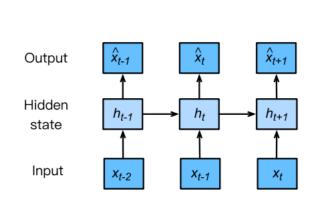
$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Explicit:

$$h_{t+1} = \sigma(Ah_t + Bx_t)$$
$$\widehat{x}_{t+1} = Ch_{t+1} + Dx_t$$

$$\sum_{t} (x_t - \widehat{x}_t)^2$$

Zhang et al. "Dive into Deep Learning"

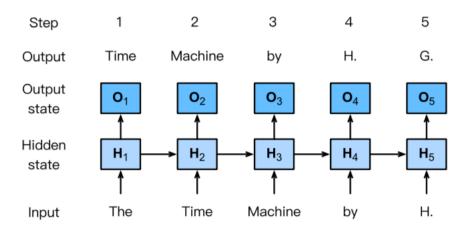
Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Model also works with text!



Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Recurrent Neural Network

