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Feature extraction

Data comes in all forms:

Real, continuous features T E Rd r = [0.1, 4.0,4.3, ..., 2.5]T

Categorical data = = [Red, 98105, Finished basement,,...,2.5]"
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Given tree and labels are known at some nodes,
how do we predict unknown labels?



Feature extraction

Data comes in all forms:

ratebeer http://www.ratebeer.com/beer/two-hearted-ale/

BB 3.8 arown8/10 avearance4/5 TasteBI10 paLaTE 35 overaw 15/20
ﬁ fonefan (25678) - VestJylland, DENMARK - JAN 18, 2009

Bottle 355ml.

Clear light to medium yellow orange color with a average, frothy, good lacing, fully lasting, ofi-white head. Aroma
is moderate to heavy malty, moderate to heavy hoppy, perfume, grapefruit, orange shell, soap. Flavor is
moderate to heavy sweet and bitter with a average to long duration. Body is medium, texture is oily, carbonation
is soft. [250908]

Text data

4 1rounB/10 aprearance 4/5 TSTET/10 PALATEA/S overaL 17/20
Ungstrup (24358) - Oamaru, NEW ZEALAND - MAR 31, 2005

An orange beer with a huge off-white head. The aroma is sweet and very freshly hoppy with notes of hop oils -
very powerful aroma. The flavor is sweet and quite hoppy, that gives flavors of oranges, flowers as well as hints
of grapefruit. Very refreshing yet with a powerful body.

Image data Audio data Time-series data

1year || vs. Etectronic Technology | [ News Add ticker

1 YEAR CHANGE 76.04%

May 2019 Sep 2019 Jan 2020 May
+16.63% +40.68% +0.05%



http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Feature Extraction
given real-valued data
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Feature extraction - real vectors

Real, continuous features r € R r=10.1,4.0,4.3, ..., 2.5]T

T = Y

Strategies if many features are uninformative?
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Feature extraction - real vectors

Real, continuous features T € R¢ x =1[0.1,4.0, 4‘;1\3) ey 2.5]T

Y

Strategies if many features are incomparable?
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Feature extraction - real vectors

Real, continuous features r € R r=10.1,4.0,4.3, ..., 2.5]T

Strategies if many features are superfluous or correlated with each other?
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Feature extraction - real vectors

Real, continuous features r € R r=10.1,4.0,4.3, ..., 2.5]T

Pre-processing pipeline: K- Xv)/r (—%—d} )E_; = _hl ;-1)(1* j4d (X}}

1. Standardize data (de-mean, divide by standard deviation) 7 it aJ“’;:;J (jl(’f“/

2. Project down to lower dllmen5|on<jsll representation using PCA o ol it H]‘
3. Apply exact transformation to Train and Test.
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Autoencoders -l P4
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Find a low dimensional representation for your data by predicting your data
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Autoencoders
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Feature Extraction
given categorical data
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Feature extraction - categorical

Categorical data = = [Red, 98105, Finished basement,,...,2.5]"

Many machine learning algorithms (e.g., linear predictors) require real valued-vectors
to make predictions.

And we want those real-valued numbers to be correlated with the label.



Feature extraction - categorical

Categorical data = = [Red, 98105, Finished basement,,...,2.5]"
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Many machine learning algorithms (e.g., linear predictors) require real valued-vectors
to make predictions.

And we want those real-valued numbers to be correlated with the label.

One-hot encoding: Assign canonical vector to each categorical variable

color € {red, green,blue}
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Feature extraction - categorical

Categorical data = = [Red, 98105, Finished basement,,...,2.5]"

———

Many machine learning algorithms (e.g., linear predictors) require real valued-vectors

to make predictions.
And we want those real-valued numbers to be correlated with the label.

Zip codes are also categorical. Is one-hot encoding appropriate?

zip code = 98105 # f 2ip ) §000
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Feature extraction - structured
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Trees define a distance between any two nodes (length of path connecting them) jﬂf -
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Given distances, you can assign each node to a cluster

Then one-hot encode:

\/Canl< cluster € {A Ba C}
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Feature extraction
given Image data




Computer Vision

Find a feature vector for the image:
e Recognition

e |dentification

e Detection

e Image classification

e etc...



Some hand-created image features

Normalized patch
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Learning Features with Convolutional Networks

CONV hidden layer
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Recall: Convolutional neural

networks (CNN) are just regular

fully connected (FC) neural

networks with some connections

removed.
Train with SGD!

reshape FC hidden layer

output layer
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Real example network: LeNet

Convolution
+ RelU

Pooling
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Output
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Residual Network of

Real networks [HeZnangRenSun'15]
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