## **Feature Extraction**



## Feature extraction

#### Data comes in all forms:

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Categorical data

$$x = [\mathtt{Red}, 98105, \mathtt{Finished basement}, \dots, 2.5]^{\top}$$

Structured data



Given tree and labels are known at some nodes, how do we predict unknown labels?

#### Feature extraction

#### Data comes in all forms:





#### Image data



#### Audio data



#### Time-series data



# Feature Extraction given real-valued data

- given  $x \in \mathbb{R}^{d}$ , improve the quality



Real, continuous features  $x \in \mathbb{R}^d$   $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$   $f(t) \to \mathcal{Y}$  Strategies if many features are **uninformative**?  $f(t) = \mathcal{Y}$  where f(t) = (CASSV) and f(t) = (CASSV) where f(t) = (CASSV)

Real, continuous features

$$x \in \mathbb{R}^a$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Strategies if many features are **incomparable**?



Real, continuous features

$$x \in \mathbb{R}^{c}$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Strategies if many features are **superfluous** or correlated with each other?

Real, continuous features

$$x \in \mathbb{R}^d \qquad x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$$

- Pre-processing pipeline:  $X_1, ---- X_n$ , (-4, -d),  $X_2^{\dagger} = -\frac{1}{6}$ , (-4, -d)  $X_2^{\dagger} = -\frac{1}{6}$ , (-4, -d) (-4, -d)
- 3. Apply exact transformation to Train and Test.

## Autoencoders

Non-likear P(A

x < < d





$$\min_{f,g} \sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

f: neuval net

5: neural net

## **Autoencoders**



# Feature Extraction given categorical data



# Feature extraction - categorical

Categorical data  $x = [\text{Red}, 98105, \text{Finished basement}, \dots, 2.5]^{\top}$ 

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

# Feature extraction - categorical

Categorical data

$$x = [\mathrm{Red}, 98105, \mathrm{Finished\ basement}, \dots, 2.5]^{\top}$$

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be correlated with the label.

One-hot encoding: Assign canonical vector to each categorical variable

color 
$$\in \{\text{red}, \text{green}, \text{blue}\}$$

unstructural  $\text{Vod} = \{\text{Josephino}\}$ 

unother encoding  $\{\text{Ved} = \text{Josephino}\}$ 

ved  $= \text{Josephino}$ 

unother encoding  $\{\text{Ved} = \text{Josephino}\}$ 
 $\{\text{Ved} = \text{Josephino}\}$ 
 $\{\text{Josephino}\}$ 
 $\{\text{Josephi$ 

# Feature extraction - categorical

Categorical data

$$x = [\mathtt{Red}, 98105, \mathtt{Finished basement}, \dots, 2.5]^{\top}$$

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be correlated with the label.

Zip codes are also categorical. Is one-hot encoding appropriate?

## Feature extraction - structured



Trees define a distance between any two nodes (length of path connecting them)



Given distances, you can assign each node to a cluster



Then one-hot encode:

cluster 
$$\in \{A, B, C\}$$
Smake  $\rightarrow$  (ou  $\rightarrow$  (2)

# Feature extraction given Image data



## **Computer Vision**



#### Find a feature vector for the image:

- Recognition
- Identification
- Detection
- Image classification
- etc...

#### Some hand-created image features



#### **Learning Features with Convolutional Networks**



Recall: Convolutional neural networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.

**Train with SGD!** 





Real example network: LeNet



#### **Real networks**

Residual Network of [HeZhangRenSun'15]



feature extraction
train on Impage Not
( I M)

ner datu

use feature extractor

—) rector

vetrus linear layer

may train flotus
extrator ( tim -tune)