# **Feature Extraction**



## Feature extraction

#### Data comes in all forms:

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Categorical data

$$x = [\mathtt{Red}, 98105, \mathtt{Finished basement}, \dots, 2.5]^{\top}$$

Structured data



Given tree and labels are known at some nodes, how do we predict unknown labels?

## Feature extraction

#### Data comes in all forms:





#### Image data



#### Audio data



#### Time-series data



# Feature Extraction given real-valued data



Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Strategies if many features are **uninformative**?

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Strategies if many features are **incomparable**?

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

Strategies if many features are **superfluous** or correlated with each other?

Real, continuous features

$$x \in \mathbb{R}^{c}$$

$$x \in \mathbb{R}^d$$
  $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$ 

#### Pre-processing pipeline:

- 1. Standardize data (de-mean, divide by standard deviation)
- 2. Project down to lower dimensional representation using PCA
- 3. Apply exact transformation to Train and Test.

## Autoencoders

Find a low dimensional representation for your data by predicting your data



minimize 
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

## Autoencoders



What if f(X) = Ax and g(y) = By?

# Feature Extraction given categorical data



# Feature extraction - categorical

Categorical data  $x = [\text{Red}, 98105, \text{Finished basement}, \dots, 2.5]^{\top}$ 

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

# Feature extraction - categorical

Categorical data  $x = [{\tt Red}, 98105, {\tt Finished basement}, \dots, 2.5]^{ op}$ 

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

One-hot encoding: Assign canonical vector to each categorical variable

 $color \in \{red, green, blue\}$ 

# Feature extraction - categorical

Categorical data 
$$x = [{\tt Red}, 98105, {\tt Finished basement}, \dots, 2.5]^{ op}$$

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

Zip codes are also categorical. Is one-hot encoding appropriate?

$$zip code = 98105$$

## Feature extraction - structured



Trees define a distance between any two nodes (length of path connecting them)

Given distances, you can assign each node to a cluster



Then one-hot encode:

cluster 
$$\in \{A, B, C\}$$

# Feature extraction given Image data



# Computer Vision



#### Find a feature vector for the image:

- Recognition
- Identification
- Detection
- Image classification
- etc...

## Some hand-created image features



### **Learning Features with Convolutional Networks**



Recall: Convolutional neural networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.

**Train with SGD!** 





Real example network: LeNet



#### **Real networks**

# Residual Network of [HeZhangRenSun'15]



# Feature extraction given Text data



Can we **embed words** into a latent space?

This embedding came from directly querying for relationships.

word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. nytimes.com)



| Source Text                                                    | Training<br>Samples                                              |
|----------------------------------------------------------------|------------------------------------------------------------------|
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (the, quick)<br>(the, brown)                                     |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (quick, the)<br>(quick, brown)<br>(quick, fox)                   |
| The quick brown fox jumps over the lazy dog. →                 | (brown, the)<br>(brown, quick)<br>(brown, fox)<br>(brown, jumps) |
| The quick brown fox jumps over the lazy dog. $\longrightarrow$ | (fox, quick)<br>(fox, brown)<br>(fox, jumps)<br>(fox, over)      |



Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer



Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

# Bag of Words



n documents/articles with lots of text

#### Questions:

- How to get a feature representation of each article?
- How to cluster documents into topics?

#### Bag of words model:

ith document:  $x_i \in \mathbb{R}^D$ 

 $x_{i,j}$  = proportion of times jth word occurred in ith document

# Bag of Words



n documents/articles with lots of text

- Can we embed each document into a feature space?

#### Bag of words model:

ith document:  $x_i \in \mathbb{R}^D$ 

 $x_{i,j}$  = proportion of times jth word occurred in ith document

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

## Nonnegative matrix factorization (NMF)

$$A \in \mathbb{R}^{m \times n}$$
  $A_{i,j}$  = frequency of jth word in document i

Nonnegative Matrix factorization:

$$\min_{W \in \mathbb{R}_+^{m \times d}, H \in \mathbb{R}_+^{n \times d}} \|A - WH^T\|_F^2$$

d is number of topics

Each column of H represents a cluster of a topic, Each row W is some weights a combination of topics

Also see latent Dirichlet factorization (LDA)

#### **BERT**



# Feature extraction given sequential data





 $x_t \in \mathbb{R} : AAPL \text{ stock}$  price at time t

Prediction model:  $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$ 



 $x_t \in \mathbb{R} : AAPL stock$ price at time t

 $h_t \in \mathbb{R}^d$ : hidden latent state of AAPL

Prediction model: 
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$
  
 $\approx p(x_{t+1}|x_t, h_{t+1})$ 



 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

 $h_t \in \mathbb{R}^d$ : hidden latent state of AAPL

Prediction model:  $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$ 



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

 $x_t \in \mathbb{R} : AAPL \text{ stock}$  price at time t

 $h_t \in \mathbb{R}^d$ : hidden latent state of AAPL

Prediction model:  $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$ 



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

#### **Explicit:**

$$h_{t+1} = \sigma(Ah_t + Bx_t)$$

$$\widehat{x}_{t+1} = Ch_{t+1} + Dx_t$$

$$\sum_{t} (x_t - \widehat{x}_t)^2$$

Zhang et al. "Dive into Deep Learning"

Prediction model: 
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$
  
 $\approx p(x_{t+1}|x_t, h_{t+1})$ 

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

#### Model also works with text!



Prediction model: 
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$
  
 $\approx p(x_{t+1}|x_t, h_{t+1})$ 

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

#### Recurrent Neural Network

