Feature Extraction

Feature extraction

Data comes in all forms:

Real, continuous features

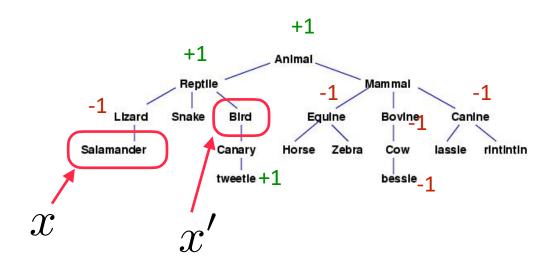
$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
 $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$

Categorical data

$$x = [\mathtt{Red}, 98105, \mathtt{Finished basement}, \dots, 2.5]^{\top}$$

Structured data



Given tree and labels are known at some nodes, how do we predict unknown labels?

Feature extraction

Data comes in all forms:

Image data

Audio data

Time-series data



Feature Extraction given real-valued data

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
 $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$

Strategies if many features are **uninformative**?

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
 $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$

Strategies if many features are **incomparable**?

Real, continuous features

$$x \in \mathbb{R}^d$$

$$x \in \mathbb{R}^d$$
 $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$

Strategies if many features are **superfluous** or correlated with each other?

Real, continuous features

$$x \in \mathbb{R}^{c}$$

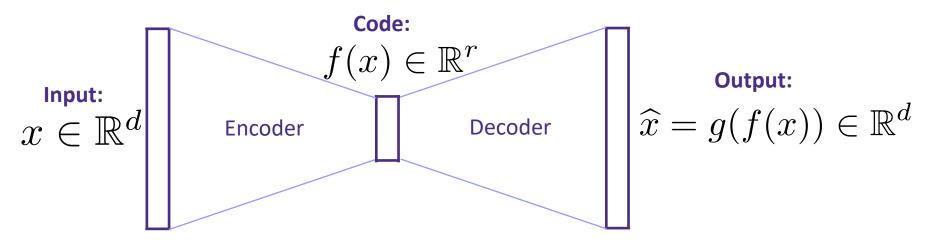
$$x \in \mathbb{R}^d$$
 $x = [0.1, 4.0, 4.3, \dots, 2.5]^\top$

Pre-processing pipeline:

- 1. Standardize data (de-mean, divide by standard deviation)
- 2. Project down to lower dimensional representation using PCA
- 3. Apply exact transformation to Train and Test.

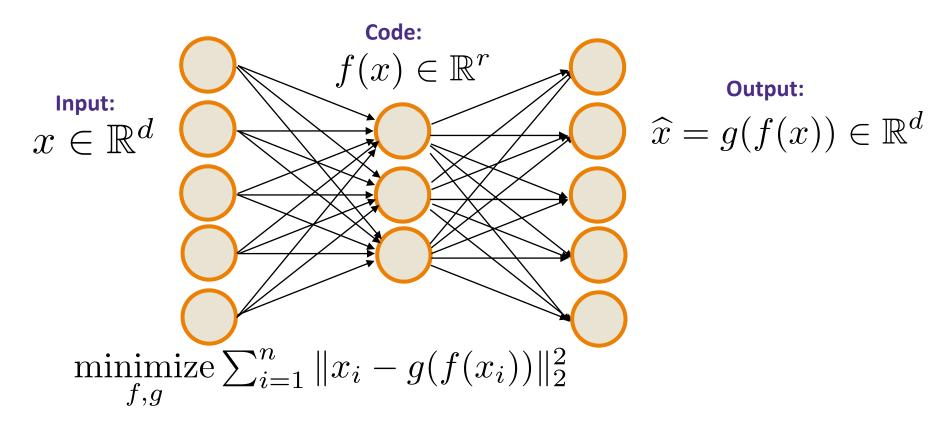
Autoencoders

Find a low dimensional representation for your data by predicting your data



minimize
$$\sum_{i=1}^{n} ||x_i - g(f(x_i))||_2^2$$

Autoencoders



What if f(X) = Ax and g(y) = By?

Feature Extraction given categorical data

Feature extraction - categorical

Categorical data $x = [\text{Red}, 98105, \text{Finished basement}, \dots, 2.5]^{\top}$

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

Feature extraction - categorical

Categorical data $x = [{\tt Red}, 98105, {\tt Finished basement}, \dots, 2.5]^{ op}$

Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

One-hot encoding: Assign canonical vector to each categorical variable

 $color \in \{red, green, blue\}$

Feature extraction - categorical

Categorical data
$$x = [{\tt Red}, 98105, {\tt Finished basement}, \dots, 2.5]^{ op}$$

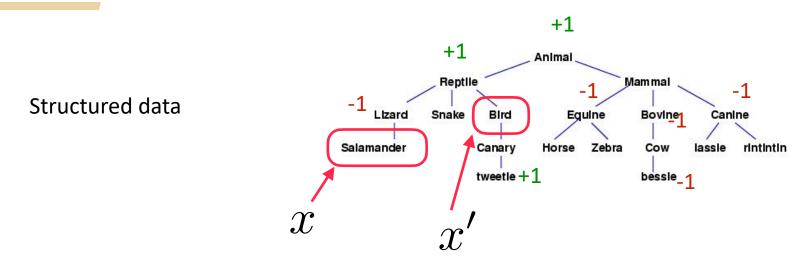
Many machine learning algorithms (e.g., linear predictors) require **real valued-vectors** to make predictions.

And we want those real-valued numbers to be **correlated with the label**.

Zip codes are also categorical. Is one-hot encoding appropriate?

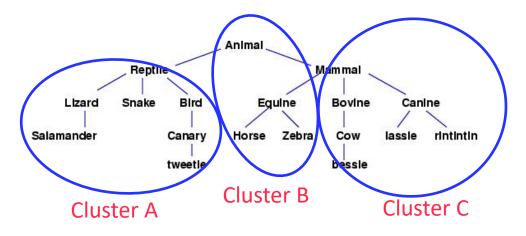
$$zip code = 98105$$

Feature extraction - structured



Trees define a distance between any two nodes (length of path connecting them)

Given distances, you can assign each node to a cluster

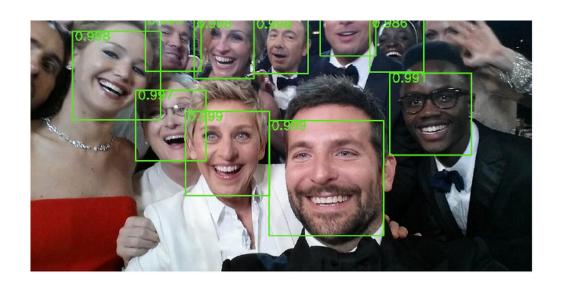


Then one-hot encode:

cluster
$$\in \{A, B, C\}$$

Feature extraction given Image data

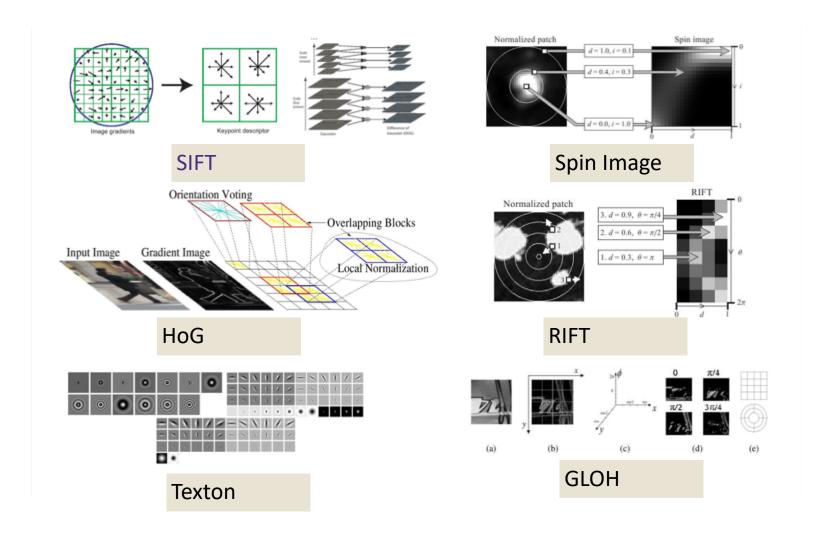
Computer Vision



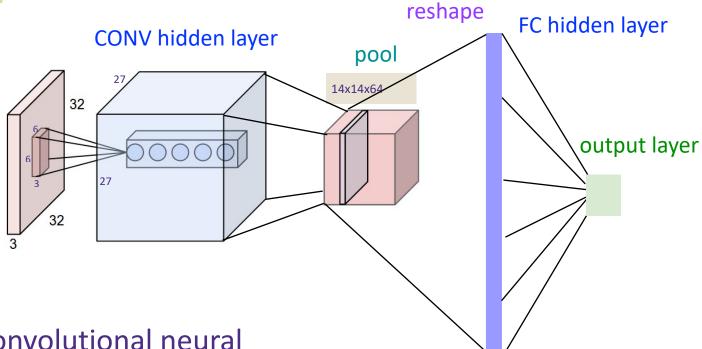
Find a feature vector for the image:

- Recognition
- Identification
- Detection
- Image classification
- etc...

Some hand-created image features

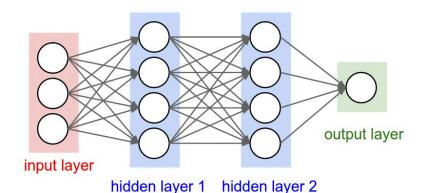


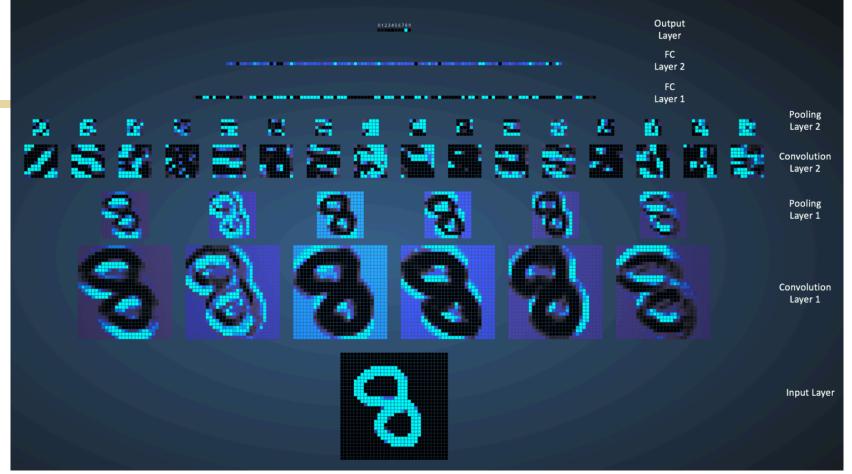
Learning Features with Convolutional Networks



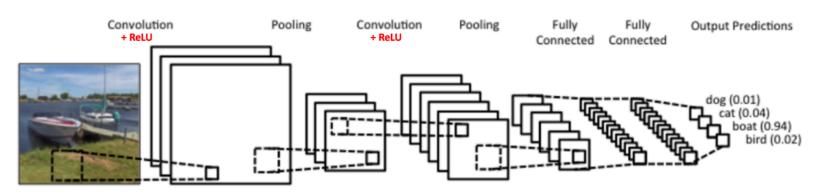
Recall: Convolutional neural networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.

Train with SGD!



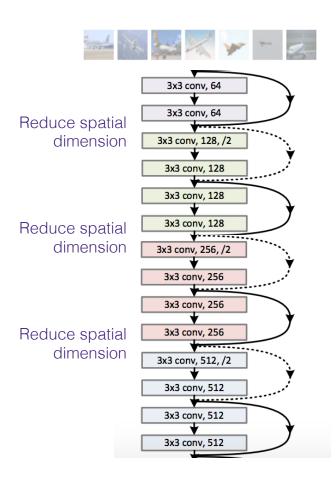


Real example network: LeNet



Real networks

Residual Network of [HeZhangRenSun'15]

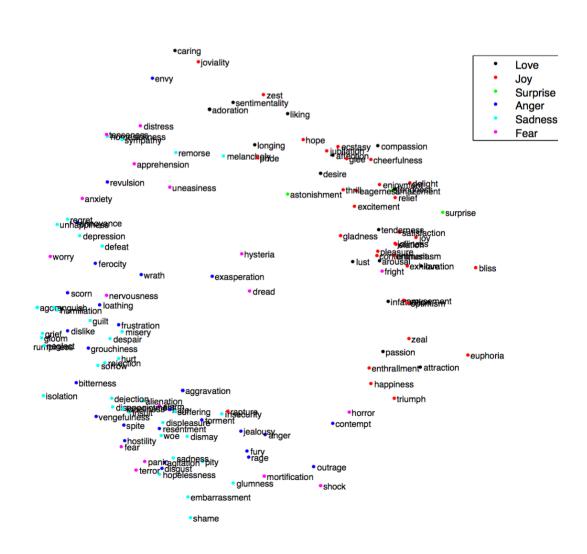


Feature extraction given Text data

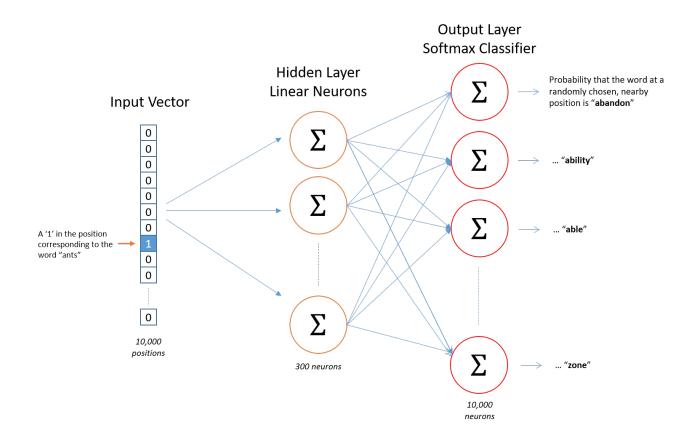
Can we **embed words** into a latent space?

This embedding came from directly querying for relationships.

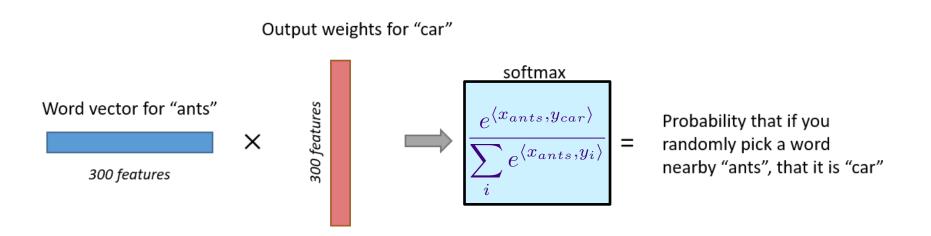
word2vec is a popular unsupervised learning approach that just uses a text corpus (e.g. nytimes.com)



Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. →	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \longrightarrow	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

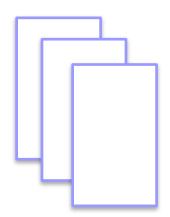


Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer



Training neural network to predict co-occuring words. Use first layer weights as embedding, throw out output layer

Bag of Words



n documents/articles with lots of text

Questions:

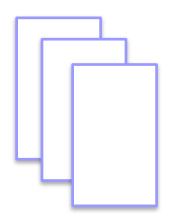
- How to get a feature representation of each article?
- How to cluster documents into topics?

Bag of words model:

ith document: $x_i \in \mathbb{R}^D$

 $x_{i,j}$ = proportion of times jth word occurred in ith document

Bag of Words



n documents/articles with lots of text

- Can we embed each document into a feature space?

Bag of words model:

ith document: $x_i \in \mathbb{R}^D$

 $x_{i,j}$ = proportion of times jth word occurred in ith document

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

Nonnegative matrix factorization (NMF)

$$A \in \mathbb{R}^{m \times n}$$
 $A_{i,j}$ = frequency of jth word in document i

Nonnegative Matrix factorization:

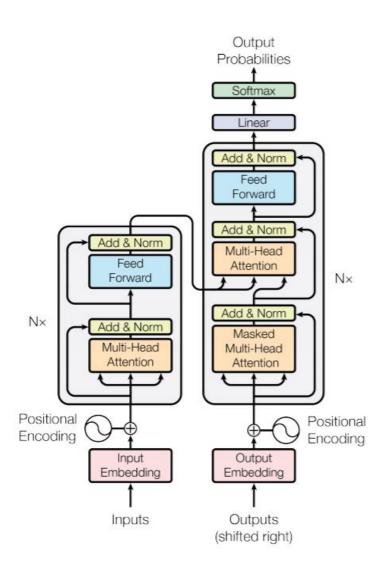
$$\min_{W \in \mathbb{R}_+^{m \times d}, H \in \mathbb{R}_+^{n \times d}} \|A - WH^T\|_F^2$$

d is number of topics

Each column of H represents a cluster of a topic, Each row W is some weights a combination of topics

Also see latent Dirichlet factorization (LDA)

BERT



Feature extraction given sequential data

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$

 $x_t \in \mathbb{R} : AAPL stock$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

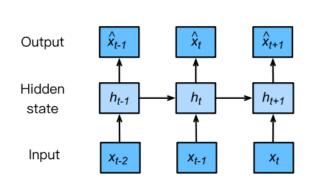
Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

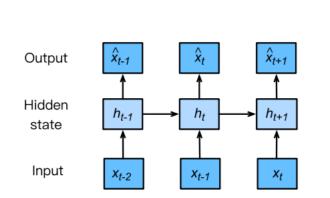
$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

 $x_t \in \mathbb{R} : AAPL \text{ stock}$ price at time t

 $h_t \in \mathbb{R}^d$: hidden latent state of AAPL

Prediction model: $p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$



$$\approx p(x_{t+1}|x_t, h_{t+1})$$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Explicit:

$$h_{t+1} = \sigma(Ah_t + Bx_t)$$

$$\widehat{x}_{t+1} = Ch_{t+1} + Dx_t$$

$$\sum_{t} (x_t - \widehat{x}_t)^2$$

Zhang et al. "Dive into Deep Learning"

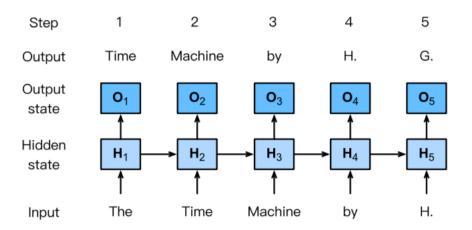
Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Model also works with text!



Prediction model:
$$p(x_{t+1}|x_t, x_{t-1}, x_{t-2}, \dots)$$

 $\approx p(x_{t+1}|x_t, h_{t+1})$

$$h_{t+1} = g(h_t, x_t)$$

Hidden state and g never observed, but learned!

Recurrent Neural Network

