
Clustering with -meansk
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Clustering images

[Goldberger et al.]

Set of Images
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Clustering web search results
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Some Data
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set of datapoints)
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-meansk

1. Ask user how many clusters 
they’d like. (e.g. k=5)  

2. Initialize: Randomly guess k 
cluster Center locations 

3. Each datapoint finds out 
which Center it’s closest to. 

4. Each Center finds the 
centroid of the points it 
owns… 

5. …and jumps there 
6. …Repeat until terminated!



Which one is a snapshot of a converged -meansk

Example (a)

Example (c) Example (d)

Example (b)
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> Initialize  centers (as random data points)

–  = ( , … ,  )

> Classify: assign each point j∈{1,…n} to nearest center:

– For each ,   

> Recenter:  becomes centroid of its point:

– For each ,    

– Equivalent to ← average of its points!

k
μ(0) μ(0)

1 μ(0)
k

j ∈ {1,…, n} C(t)( j) ← arg min
i∈{1,…,k}

∥μ(t)
i − xj∥2

2

μi
i ∈ {1,…, k} μ(t+1)

i ← arg min
μ ∑

j:C(t)( j)=i

∥μ − xj∥2
2

μi

-meansk
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What does -means do? Coordinate descent on

        

k

F(μ, C) =
n

∑
j=1

∥μC( j) − xj∥2
2
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> -means is trying to minimize the following objective 

                 

> Via coordinate descent:
> Fix , optimize C

k
F(μ, C) =

n

∑
j=1

∥μC( j) − xj∥2
2

μ

Does -means converge??k
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Does -means converge?? k

> -means is trying to minimize the following objective  

                  

> Via coordinate descent: 
> Fix C, optimize  

             

by solving  separate problems 
             

whose solution is  

            

k
F(μ, C) =

n

∑
j=1

∥μC( j) − xj∥2
2

μ
min

μ

n

∑
j=1

∥μC( j) − xj∥2
2

k
min

μi
∑

j:C( j)=i
∥μi − xj∥2

2

μi ← 1
|{j : C( j) = i} | ∑

j:C( j)=i
xj



• there is only a finite set of values that  can take  
(  is large but finite)


• so there is only finite,  at most, values for  also

• each time we update them, we will never increase the objective 

function 


• the objective is lower bounded by zero

• after  at most  steps, the algorithm must converge  

(as the assignments  cannot return to previous 
assignments in the course of -means iterations)

{C( j)}n
j=1

kn

kn μ

k

∑
i=1

∑
j:C( j)=i

∥xj − μi∥2
2

kn

{C( j)}n
j=1

k

Does -means converge??k
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Downside of -meansk
• the final solution depends on the initialization  

(as it is a coordinate descent on a non-convex problem)

Trial 1

Trial 2

Initial position of centers       final converged assignment



-means ++: a smart initializationk
Smart initialization: 
1. Choose first cluster center uniformly at random from data points

2. Repeat  times

    3. For each data point , compute distance  to the nearest cluster center

    4. Choose new cluster center from amongst data points, with probability of  being 
chosen proportional to  


• apply standard K-means after the initialization


• -means++ achieves -means error at most a factor of  worse than the optimal  
[Arther,Vassilvitskii,2007]

k − 1
xj dj

xj
(dj)2

k k log k
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Downside of -meansk
• Cluster shapes can be different


• Or clusters can have overlaps



Solution: density estimation

> Estimate probability density function from  i.i.d. samples n
x1, x2, …, xn



> Approximate unknown density with a mixture of Gaussians

Density as mixture of Gaussians



P(x; μ, Σ) = 1
(2π)d/2 |Σ |1/2 exp{ − 1

2 (x − μ)TΣ−1(x − μ)}
Mixture of Gaussians

> Approximate unknown density with a mixture of Gaussians
P(xj; π, μ, Σ) =

k

∑
i=1

πi = 1
πi ≥ 0



max
π,μ,Σ

n

∑
j=1

log P(xj; π, μ, Σ)

Maximum likelihood solves clustering



Maximum likelihood solves clustering

To assign clusters, we define latent cluster indicator  
Suppose for just now that we have  (true cluster indicator), 
then we have 

zj ∈ {1,…, k}
zj

P(xj; zj, π, μ, Σ) =

We can now infer the clusters  
for each sample using this formula 



Maximum likelihood solves clustering
But in practice we do not know ’s  
but we can now infer the clusters, by computing the  posterior  
probability on ’s 

zj

zj

rji = P(sample j belongs to cluster i)
= P(zj = i |xj; π, μ, Σ)

=
πiP(xj; μi, Σi)

∑i′ 
πi′ P(xj; μi′ , Σi′ )



Recap: Mixture of Gaussians for clustering
Given a set of samples 
1. Fit a mixture of Gaussian model with maximum likelihood 
2. Use posterior assignment probability for soft clustering 
 
this can handle overlapping clusters, and clusters of various (oval) shapes 
and not just circles



Questions?


