Principal Component Analysis



Principal components is the subspace that
minimizes the reconstruction error

T
minimize —Z”xi_pi”%
n

Upy... U

: i=1
r
T T
p; = Z(uj xpu; = UU x;
j=1
where U = [U; Uy -+ u] € R

1 n
minimize — x. — UUT x|
mize - 21 Ix; 113
subjectto U'U=1_,

Q. How do we solve this optimization?



Minimizing reconstruction error
to find principal components
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Minimizing reconstruction error

to find principal components
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Variance maximization vs. reconstruction error minimization

* Dboth give the same principal components as optimal solution
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Reconstruction error minimization .
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finds directions that minimize

the distances to p,’s \
-1

ariance maximization finds directions
that maximizes the spread of p,’s



Maximizing variance to find principal components
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We will solve it for r = 1 case,
and the general case follows similarly
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Maximizing variance to find principal components
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e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize,, u’ Cu (b)
subject to ||u||% <1

e thereason is that, because u'Cu>0foralu e IRd, the optimal
i 2 = A .
solution of (b) has to have |[ul|5 =1 B \FTZQ\,\:_& 22 outer

o ifitdid not have ||lu||3 = 1, say ||i||2 = 0.9, then we can just multiply
this u by a constant factor ofand increase the objective by a

factor of 10/9 while still satisfying the constraints



maximize, u’ Cu (b)

subject to ||u||% <1

we are maximizing the variance, while keeping u small

this can be reformulated as an unconstrained problem, with
Lagrangian encoding, to move the constraint into the objective

maximize, u’Cu — /1||u||% (¢)
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this encourages small 1 as we want, and we can make this
connection precise: there exists a (unknown) choice of 4 such
that the optimal solution of (c) is the same as the optimal solution

of (b)

further, for this choice of 4, the optimal u has ||u||, = 1



Solving the unconstrained optimization
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e to find such A and the corresponding u, we solve the unconstrained
optimization, by setting the gradient to zero

V,Fiu) = 2Cu—-2u =0

e the candidate solution satisfies: Cu* = Au*,

i.e. an eigenvector of C QH = GH

maximize, u’ Cu
subject to ||u||% =1

o et (/1(1), u(l)) denote the largest eigenvalue and corresponding
eigenvector of C, with norm one, i.e. ||u(1)||% =1

e The maximum is achieved when u = uV



The principal component analysis

e so far we considered finding ONE principal component u &€ R4

* it is the eigenvector corresponding to the maximum eigenvalue
of the covariance matrix

1
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* We can use Singular Value Decomposition (SVD) to find such
eigen vector

* note that is the data is not centered at the origin, we should re-
center the data before applying SVD

* in general we define and use multiple principal components

e if we need r principal components, we take r eigenvectors
corresponding to the largest r eigenvalues of C



Algorithm: Principal Component Analysis

input: data points {x;}_, target dimension r < d

output: r-dimensional subspace U G vlme
algorithm:
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let (uy, ..., u,) be the set of (normalized) eigenvegcors with
corresponding to the largest r eigenvalues of C

return U = [U Uy -+ U]

further the data points can be represented compactly via
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Theorem (SVD): Let A € R™*" with rank 7 < min{m,n}. Then A = USV7T

where S € R"'XT"" is diagonal with positive entries, UTU =1, VIV = I.
l+ € A': BC} \_%_]

Singular Value Decomposition (SVD)
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e V/s are the r eigen vectors of AT A with corresponding eigen values S].Jz.’s

e U;s are the r eigen vectors of AAT with corresponding eigen values .S’].Jz.’s

e Computing SVD takes O(mnr) operations



Singular Value Decomposition (SVD)

w=u

e Consider a full rank matrix A € R™ " whose SVD is A = USV!, and
we want to find the best rank-r approximation of A [/p r—“@f # %/l
that minimizes the error % cal)
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e The optimal rank-r approximation is Ul:rSlzr,lzerT:r



How do we compute singular vectors?

* In practice: Lanczos method
e We will learn: power iteration

e Let C = USUT € R% pe SVD of the matrix we want to compute
the top one singular vector
e U = [uy,u,,...,u,;] are the singular vectors

(ordered in the decreasing order of the corresponding singular values)
e We also assume A; > A, in order to ensure uniqueness of u,
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Power iteration st sipbe
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Power iteration for general rank-r
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Matrix completion for recommendation systems

Netflix challenge dataset
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e users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

e without any assumptions, the missing entries can be anything, and
no prediction is possible

Q.



Matrix completion problem

however, the ratings are not arbitrary, but people with similar
tastes rate similarly

such structure can be modeled using low dimensional
representation of the data as follows

We will find a set of principal compopnent vectors
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such that that ratings x; € R4 of user I, can be represented as
Sf("«;s x;, = al]u; + ---a[r]u,
" J’ = Ual'

for some lower-dimensional a; € R” for i-th user and some
r<d

for example, u; € R“ means how horror movie fans like each
of the d movies,

and a;[ 1] means how much user i is fan of horror movies



Matrix completion

e et X =[X X - X,] € R pethe ratings matrix, and
assume it is fully observed, i.e. we know all the entries

e then we want to find U € R and

A=[a a - a,] € R™ that approximates X
X X~ U A
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e if we observe all entries of X, then we can find the best rank-r
approximation with SVD



Matrix completion

e in practice, we only observe X partially
e let Syain = {(iznj)}2_, denote N observed ratings for user i, on movie j,
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o let va denote the j-th row of U and g; denote i-th column of A

« then user I’s rating on movie J, i.e. Xﬁ is approximated by vaal-, which is the inner

product of V; (a column vector) and a column vector g;

o . T
« we can also write it as (v;, a;) = v; ¢,



Matrix completion

e a natural approach to fit vj’s and a;s to given training data is to solve
minimizey 5 2 X — v/ a)

J l(i’j)estrain
devymr T (ycden) |

* this can be solved, for example via gradient descent or alternating
minimization
e this can be quite accurate, with small number of samples

e Theorem [Keshavan,Montanari,Oh 2009]

Assume the ground truths X has rank r, then
(a variant of) gradient descent finds the optimal solution if we

observe more than c r (d + n) log(dn) entries at random positions




Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
-1 = . |
= o e+ i LS

§ |

] d "
e - ola 0% =0 -
- » - - - - -

0 - B
8 ol ull & = =
ol B

e e Bl B
. ---. -

' -
B = == DU SR S -0

0.75% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA squared error (X;; — (UA),)?
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

1.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X

Gradient descent output UA
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix
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