Principal Component Analysis

Principal components is the subspace that minimizes the reconstruction error

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - p_i||_2^2$$

$$p_i = \sum_{i=1}^r (u_j^T x_i) u_j = \mathbf{U} \mathbf{U}^T x_i$$

where
$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - \mathbf{U}\mathbf{U}^T x_i||_2^2$$

subject to
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}_{r \times r}$$

Minimizing reconstruction error to find principal components

$$\frac{1}{N} \sum_{i=1}^{N} \chi_{i}^{T} \chi_{i} - 2 \chi_{i}^{T} U U^{T} \chi_{i} + \chi_{i}^{T} U U^{T} U U^{T} \chi_{i} = \lim_{U} \frac{1}{n} \sum_{i=1}^{n} ||x_{i} - \mathbf{U} \mathbf{U}^{T} x_{i}||_{2}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \chi_{i}^{T} \chi_{i} - \chi_{i}^{T} U U^{T} \chi_{i}$$
subject to $\mathbf{U}^{T} \mathbf{U} = \mathbf{I}_{r \times r}$

$$= \frac{1}{N} \sum_{i=1}^{N} \chi_{i}^{T} \chi_{i} - \frac{1}{N} \sum_{i=1}^{N} \chi_{i}^{T} U U^{T} \chi_{i}$$

$$U = [\alpha_{i}, \alpha_{i}, \dots, \alpha_{r}]$$

$$= \frac{1}{n} \sum_{i=1}^{M} X_i^T X_i - \frac{1}{n} \sum_{i=1}^{M} X_i^T U U^T X_i$$

$$Const.$$

$$\sum_{i=1}^{M} C X_i^T U_j^2$$

$$\sum_{i=1}^{M} C X_i^T U_j^2$$

$$\sum_{i=1}^{M} C X_i^T U_j^2$$

$$\sum_{i=1}^{M} C X_i^T U_j^2$$

$$V_i = I$$

$$V_i = I$$

$$S.t.$$

$$V_i^T U_j = I$$

Minimizing reconstruction error to find principal components

$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - UU^T x_i\|_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ \|x_i\|_2^2 - 2x_i^T UU^T x_i + x_i^T U \underline{U}^T \underline{U} U^T x_i \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|x_i\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} x_i^T UU^T x_i$$

$$= C - \sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

Variance in direction u_i

minimize $\frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$ subject to $\mathbf{U}^T \mathbf{U} = \mathbf{I}_{r \times r}$

Variance maximization vs. reconstruction error minimization

both give the same principal components as optimal solution

Maximizing variance to find principal components

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

We will solve it for r=1 case, and the general case follows similarly

Maximizing variance to find principal components

$$C = \frac{1}{N} \sum_{i=1}^{N} \left[X_i X_i^T \right]$$
 maximize_u $u^T C u$ (a) subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- the reason is that, because $u^T \mathbf{C} u \geq 0$ for all $u \in \mathbb{R}^d$, the optimal solution of (b) has to have $\|u\|_2^2 = 1$
- if it did not have $||u||_2^2 = 1$, say $||u||_2^2 = 0.9$, then we can just multiply this u by a constant factor of $\sqrt{10/9}$ and increase the objective by a factor of 10/9 while still satisfying the constraints

$$\text{maximize}_{u} u^{T} \mathbf{C} u$$

$$\text{subject to} \quad ||u||_{2}^{2} \le 1$$

- we are maximizing the variance, while keeping u small
- this can be reformulated as an unconstrained problem, with Lagrangian encoding, to move the constraint into the objective

$$\max_{u \in \mathcal{L}} \underbrace{u^T \mathbf{C} u - \lambda \|u\|_2^2}_{F_2(u)} \tag{c}$$

- this encourages small u as we want, and we can make this connection precise: there exists a (unknown) choice of λ such that the optimal solution of (c) is the same as the optimal solution of (b)
- further, for this choice of λ , the optimal u has $||u||_2 = 1$

Solving the unconstrained optimization

$$\begin{array}{ccc}
\text{maximize}_{u} & u^{T}\mathbf{C}u - \lambda \|u\|_{2}^{2} \\
& & F_{\lambda}(u)
\end{array}$$

• to find such λ and the corresponding u, we solve the unconstrained optimization, by setting the gradient to zero

$$\nabla_{u}F_{\lambda}(u) = 2\mathbf{C}u - 2\lambda u = 0$$

• the candidate solution satisfies: $\mathbf{C}u^* = \lambda u^*$, i.e. an eigenvector of \mathbf{C}

maximize
$$u^T \mathbf{C} u$$

subject to
$$||u||_2^2 = 1$$

- let $(\lambda^{(1)}, u^{(1)})$ denote the largest eigenvalue and corresponding eigenvector of \mathbb{C} , with norm one, i.e. $||u^{(1)}||_2^2 = 1$
- The maximum is achieved when $u = u^{(1)}$

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can use Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- **output**: r-dimensional subspace U

X. r face

- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of \mathbb{C}
- return $\mathbf{U} = [u_1 \ u_2 \ \cdots \ u_r]$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{USV}^T$

where
$$\mathbf{S} \in \mathbb{R}^{r \times r}$$
 is diagonal with positive entries, $\mathbf{U}^T \mathbf{U} = I$, $\mathbf{V}^T \mathbf{V} = I$.

What is $A^T A v_i = \delta_i^2 \mathbf{V}_i$

What is $AA^T u_i = \delta_i^2 \mathbf{V}_i$

What is $AA^T u_i = \delta_i^2 \mathbf{V}_i$
 $A^T A = \mathbf{V} \mathbf{S}^2 \mathbf{V}^T$

•
$$v_i$$
's are the r eigen vectors of A^TA with corresponding eigen values S_{ii}^2 's

- u_i 's are the r eigen vectors of AA^T with corresponding eigen values S_{ii}^2 's
- Computing SVD takes O(mnr) operations

Singular Value Decomposition (SVD)

MIN

• Consider a full rank matrix $A \in \mathbb{R}^{m \times n}$ whose SVD is $A = USV^T$, and we want to find the best rank-r approximation of A that minimizes the error

ullet The optimal rank-r approximation is $U_{1:r}S_{1:r,1:r}V_{1:r}^T$

How do we compute singular vectors?

- In practice: Lanczos method
- We will learn: power iteration
- \bullet Let $C=USU^T\in\mathbb{R}^{d\times d}$ be SVD of the matrix we want to compute the top one singular vector
 - $U = [u_1, u_2, ..., u_d]$ are the singular vectors (ordered in the decreasing order of the corresponding singular values)
 - ullet We also assume $\lambda_1>\lambda_2$ in order to ensure uniqueness of u_1

$$\tilde{v}_{t+1} \leftarrow Cv_t$$

$$v_{t+1} \leftarrow \frac{\tilde{v}_{t+1}}{\|\tilde{v}_{t+1}\|_2}$$

Power iteration

lst signer
J Value

$$\tilde{v}_{t+1} \leftarrow Cv_t$$

$$v_{t+1} \leftarrow \frac{\tilde{v}_{t+1}}{\|\tilde{v}_{t+1}\|_2}$$

$$\begin{aligned} \| u_{1} - V_{1} \|^{2} &= 1 - 2 \ u_{1}^{T} V_{1} + 1 \\ &= 2 \ (1 - u_{1}^{T} V_{1}) = 2 \ (1 - u_{1}^{T} \frac{C V_{0}}{||C V_{0}||_{2}}) \end{aligned}$$

$$= 2 \ (1 - \frac{\lambda_{1}}{||C V_{0}||_{2}} \cdot u_{1}^{T} V_{0})$$

$$= 2 \ (1 - u_{1}^{T} V_{0} + u_{1}^{T} V_{0} - \frac{A_{1}}{||C V_{0}||_{2}} \cdot u_{1}^{T} V_{0})$$

$$= \frac{1}{2} \left[u_{1} - V_{0} \right]^{2} - 2 \left(\frac{A_{1}}{||C V_{0}||_{2}} - 1 \right) \cdot u_{1}^{T} V_{0}$$

$$= \frac{1}{2} \left[u_{1} - V_{0} \right]^{2} - 2 \left(\frac{A_{1}}{||C V_{0}||_{2}} - 1 \right) \cdot u_{1}^{T} V_{0}$$

$$= \frac{1}{2} \left[u_{1} - V_{0} \right]^{2} - 2 \left(\frac{A_{1}}{||C V_{0}||_{2}} - 1 \right) \cdot u_{1}^{T} V_{0}$$

$$= \frac{1}{2} \left[u_{1} - V_{0} \right]^{2} - 2 \left(\frac{A_{1}}{||C V_{0}||_{2}} - 1 \right) \cdot u_{1}^{T} V_{0}$$

$$= \frac{1}{2} \left[u_{1} - V_{0} \right]^{2} - 2 \left(\frac{A_{1}}{||C V_{0}||_{2}} - 1 \right) \cdot u_{1}^{T} V_{0}$$

Power iteration for general rank-r

$$\begin{split} \tilde{v}_{t+1} \leftarrow C v_t & \quad \text{• First approach:} \\ v_{t+1} \leftarrow \frac{\tilde{v}_{t+1}}{\|\tilde{v}_{t+1}\|_2} & \quad \text{• Repeat r times} \\ & \quad \text{• Run rank-1 power iteration} \\ & \quad \text{• Subtract } C - (v_t^T C v_t) v_t v_T^T \longrightarrow C \end{split}$$

- First approach:
 - Repeat r times

 - Ur, Uz, Uz --- Ur
- Second approach:

Matrix completion for recommendation systems

Netflix challenge dataset

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

Matrix completion problem

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors

$$\mathbf{U} = [u_1 \quad u_2 \quad \cdots \quad u_r] \in \mathbb{R}^{d \times r}$$
• such that that ratings $x_i \in \mathbb{R}^d$ of user i , can be represented as

$$x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$

$$= \mathbf{U}a_i$$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies.
- and $a_i[1]$ means how much user i is fan of horror movies

Matrix completion

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$ that approximates \mathbf{X}

• if we **observe all entries** of X, then we can find the best rank-r approximation with SVD

Matrix completion

- in practice, we only observe X partially
- let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- let v_i^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. \mathbf{X}_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_i (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_i^T a_i$

Matrix completion

• a natural approach to fit v_j 's and $a_i's$ to given training data is to solve minimize_{U,A} $\sum_i (\mathbf{X}_{ii} - v_i^T a_i)^2$

- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

• Theorem [Keshavan, Montanari, Oh 2009] Assume the ground truths \mathbf{X} has rank r, then (a variant of) gradient descent finds the optimal solution if we observe more than $c r (d+n) \log(dn)$ entries at random positions

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled