
Principal Component Analysis

Principal components is the subspace that  
minimizes the reconstruction error

  

 
where

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

subject to UTU = Ir×r

Q. How do we solve this optimization?

Minimizing reconstruction error  
to find principal components

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

Minimizing reconstruction error  
to find principal components

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

= 1
n

n

∑
i=1

{∥xi∥2
2 − 2xT

i UUT xi + xT
i U UTU

⏟
=I

UT xi}
= 1

n

n

∑
i=1

∥xi∥2
2

does not depend on U

− 1
n

n

∑
i=1

xT
i UUT xi

= C −
r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

Variance in direc8on uj maximize
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to UTU = Ir×r

Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution

Maximizing variance to find principal components

maximize
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to UTU = Ir×r

We will solve it for case,
and the general case follows similarly

r = 1

maximize
u:∥u∥2=1

1
n

n

∑
i=1

(uT xi)2

maximize
u:∥u∥2=1

uTCu

Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

• the reason is that, because for all , the optimal
solution of has to have

• if it did not have , say , then we can just multiply
this by a constant factor of and increase the objective by a
factor of while still satisfying the constraints

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9

maximizeu uTCu
 subject to ∥u∥2

2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)

• we are maximizing the variance, while keeping small

• this can be reformulated as an unconstrained problem, with

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small as we want, and we can make this
connection precise: there exists a (unknown) choice of such
that the optimal solution of is the same as the optimal solution
of

• further, for this choice of , the optimal has

u

u
λ

(c)
(b)

λ u ∥u∥2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)

Solving the unconstrained optimization

• to find such and the corresponding , we solve the unconstrained
optimization, by setting the gradient to zero 

• the candidate solution satisfies: ,  
i.e. an eigenvector of  
 
 
 

• let denote the largest eigenvalue and corresponding
eigenvector of , with norm one, i.e.

• The maximum is achieved when

λ u

∇uFλ(u) = 2Cu − 2λu = 0
Cu* = λu*

C

(λ(1), u(1))
C ∥u(1)∥2

2 = 1
u = u(1)

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

maximizeu uTCu
 subject to ∥u∥2

2 = 1

The principal component analysis

• so far we considered finding ONE principal component

• it is the eigenvector corresponding to the maximum eigenvalue

of the covariance matrix  

• We can use Singular Value Decomposition (SVD) to find such
eigen vector

• note that is the data is not centered at the origin, we should re-
center the data before applying SVD

• in general we define and use multiple principal components

• if we need principal components, we take eigenvectors

corresponding to the largest eigenvalues of

u ∈ ℝd

C = 1
n

XTX ∈ ℝd×d

r r
r C

Algorithm: Principal Component Analysis
• input: data points , target dimension

• output: -dimensional subspace

• algorithm:

• compute mean

• compute covariance matrix 

• let be the set of (normalized) eigenvectors with
corresponding to the largest eigenvalues of

• return

• further the data points can be represented compactly via  

{xi}n
i=1 r ≪ d

r U

x̄ = 1
n

n

∑
i=1

xi

C = 1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr

Singular Value Decomposition (SVD)

What is AT Avi =

What is AATui =

 AAT =

 AT A =

• ’s are the eigen vectors of with corresponding eigen values ’s

• ’s are the eigen vectors of with corresponding eigen values ’s

• Computing SVD takes operations

vi r AT A S2
jj

ui r AAT S2
jj

O(mnr)

Singular Value Decomposition (SVD)

• Consider a full rank matrix whose SVD is , and
we want to find the best rank- approximation of
that minimizes the error

A ∈ ℝm×n A = USVT

r A

 minimizeL∈ℝm×n

m

∑
i=1

n

∑
j=1

(Ai, j − Li, j)2

subject to rank(L) = r

• The optimal rank- approximation is r U1:rS1:r,1:rVT
1:r

How do we compute singular vectors?

• In practice: Lanczos method
• We will learn: power iteration
• Let be SVD of the matrix we want to compute

the top one singular vector
• are the singular vectors

(ordered in the decreasing order of the corresponding singular values)
• We also assume in order to ensure uniqueness of

C = USUT ∈ ℝd×d

U = [u1, u2, …, ud]

λ1 > λ2 u1

ṽt+1 ← Cvt

vt+1 ← ṽt+1
| ṽt+1 |

Power iteration

ṽt+1 ← Cvt

vt+1 ← ṽt+1
| ṽt+1 |

Power iteration for general rank-r

ṽt+1 ← Cvt

vt+1 ← ṽt+1
| ṽt+1 |

• First approach:
• Repeat r times

• Run rank-1 power iteration
• Subtract

• Second approach:

C − (vT
t Cvt)vtvT

T

Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

• without any assumptions, the missing entries can be anything, and
no prediction is possible

n =

= d

Netflix challenge dataset

Matrix completion problem
• however, the ratings are not arbitrary, but people with similar

tastes rate similarly

• such structure can be modeled using low dimensional

representation of the data as follows

• we will find a set of principal component vectors

• such that that ratings of user , can be represented as  

  
  
for some lower-dimensional for -th user and some

• for example, means how horror movie fans like each

of the movies,

• and means how much user is fan of horror movies

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i

r ≪ d
u1 ∈ ℝd

d
ai[1] i

Matrix completion
• let be the ratings matrix, and

assume it is fully observed, i.e. we know all the entries

• then we want to find and

 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j
d n

U A≈

• if we observe all entries of , then we can find the best rank-
approximation with SVD

X r

Matrix completion
• in practice, we only observe partially

• let denote observed ratings for user on movie

X
Strain = {(iℓ, jℓ)}N

ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let denote the -th row of and denote -th column of

• then user ’s rating on movie , i.e. is approximated by , which is the inner
product of (a column vector) and a column vector

• we can also write it as

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai

Matrix completion

• a natural approach to fit ’s and to given training data is to solve  

• this can be solved, for example via gradient descent or alternating
minimization

• this can be quite accurate, with small number of samples

vj a′ is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2

• Theorem [Keshavan,Montanari,Oh 2009]  
Assume the ground truths has rank , then  
(a variant of) gradient descent finds the optimal solution if we  
observe more than entries at random positions

X r

c r (d + n) log(dn)

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

