
Principal Component Analysis

 



Principal components is the subspace that  
minimizes the reconstruction error
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Q. How do we solve this optimization?



Minimizing reconstruction error  
to find principal components
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Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution



Maximizing variance to find principal components
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We will solve it for  case,  
and the general case follows similarly
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Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• the reason is that, because  for all , the optimal 
solution of  has to have 


• if it did not have , say , then we can just multiply 
this  by a constant factor of  and increase the objective by a 
factor of  while still satisfying the constraints 
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• we are maximizing the variance, while keeping  small

• this can be reformulated as an unconstrained problem, with 

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small  as we want, and we can make this 
connection precise: there exists a (unknown) choice of  such 
that the optimal solution of  is the same as the optimal solution 
of 


• further, for this choice of ,  the optimal  has 
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Solving the unconstrained optimization

• to find such  and the corresponding , we solve the unconstrained 
optimization, by setting the gradient to zero 
                           


• the candidate solution satisfies: ,       
i.e. an eigenvector of  
 
 
 

• let  denote the largest eigenvalue and corresponding 
eigenvector of , with norm one, i.e. 


• The maximum is achieved when 
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The principal component analysis

• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  
                              


• We can use Singular Value Decomposition (SVD) to find such 
eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components

• if we need  principal components, we take  eigenvectors 

corresponding to the largest  eigenvalues of  
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Algorithm: Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace 

• algorithm: 


• compute mean    


• compute covariance matrix 
            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via  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Singular Value Decomposition (SVD)

What is  AT Avi =

What is  AATui =

 AAT =

 AT A =

• ’s are the  eigen vectors of  with corresponding eigen values ’s 

• ’s are the  eigen vectors of  with corresponding eigen values ’s 

• Computing SVD takes  operations
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Singular Value Decomposition (SVD)

• Consider a full rank matrix  whose SVD is , and  
we want to find the best rank-  approximation of   
that minimizes the error 

A ∈ ℝm×n A = USVT
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How do we compute singular vectors?

• In practice: Lanczos method 
• We will learn: power iteration 
• Let  be SVD of the matrix we want to compute  

the top one singular vector 
•  are the singular vectors  

(ordered in the decreasing order of the corresponding singular values) 
• We also assume  in order to ensure uniqueness of 

C = USUT ∈ ℝd×d

U = [u1, u2, …, ud]

λ1 > λ2 u1

ṽt+1 ← Cvt

vt+1 ← ṽt+1
| ṽt+1 |



Power iteration

ṽt+1 ← Cvt

vt+1 ← ṽt+1
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Power iteration for general rank-r

ṽt+1 ← Cvt

vt+1 ← ṽt+1
| ṽt+1 |

• First approach:  
• Repeat r times 

• Run rank-1 power iteration 
• Subtract  

• Second approach: 

C − (vT
t Cvt)vtvT

T



Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and 
no prediction is possible

n =

= d

Netflix challenge dataset



Matrix completion problem
• however, the ratings are not arbitrary, but people with similar 

tastes rate similarly

• such structure can be modeled using low dimensional 

representation of the data as follows

• we will find a set of principal component vectors 



• such that that ratings  of user , can be represented as  

               
                    
for some lower-dimensional  for -th user and some 



• for example,  means how horror movie fans like each 

of the  movies,

• and  means how much user  is fan of horror movies               

U = [u1 u2 ⋯ ur] ∈ ℝd×r
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ai ∈ ℝr i

r ≪ d
u1 ∈ ℝd
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Matrix completion
• let  be the ratings matrix, and 

assume it is fully observed, i.e. we know all the entries

• then we want to find  and 

 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j
d n

U A≈

• if we observe all entries of , then we can find the best rank-  
approximation with SVD

X r



Matrix completion
• in practice, we only observe  partially

• let  denote  observed ratings for user  on movie 

X
Strain = {(iℓ, jℓ)}N

ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the inner 
product of  (a column vector) and a column vector  


• we can also write it as 

vT
j j U ai i A

i j Xji vT
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vj ai

⟨vj, ai⟩ = vT
j ai



Matrix completion

• a natural approach to fit ’s and  to given training data is to solve  
                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples

vj a′ is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2

• Theorem [Keshavan,Montanari,Oh 2009]  
Assume the ground truths  has rank , then  
(a variant of) gradient descent finds the optimal solution if we  
observe more than  entries at random positions

X r

c r (d + n) log(dn)



Gradient descent
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