
Principal Component Analysis



Principal components is the subspace that  
minimizes the reconstruction error
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Q. How do we solve this optimization?
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Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution



Maximizing variance to find principal components
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We will solve it for  case,  
and the general case follows similarly
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Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• the reason is that, because  for all , the optimal 
solution of  has to have 


• if it did not have , say , then we can just multiply 
this  by a constant factor of  and increase the objective by a 
factor of  while still satisfying the constraints 
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• we are maximizing the variance, while keeping  small

• this can be reformulated as an unconstrained problem, with 

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small  as we want, and we can make this 
connection precise: there exists a (unknown) choice of  such 
that the optimal solution of  is the same as the optimal solution 
of 
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Solving the unconstrained optimization

• to find such  and the corresponding , we solve the unconstrained 
optimization, by setting the gradient to zero 
                           


• the candidate solution satisfies: ,       
i.e. an eigenvector of  
 
 
 

• let  denote the largest eigenvalue and corresponding 
eigenvector of , with norm one, i.e. 
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The principal component analysis

• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  

                              


• We can use Singular Value Decomposition (SVD) to find such 
eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components


• if we need  principal components, we take  eigenvectors 
corresponding to the largest  eigenvalues of  
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Algorithm: Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace 


• algorithm: 


• compute mean    


• compute covariance matrix 

            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via 
           

{xi}n
i=1 r ≪ d

r U

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr



Singular Value Decomposition (SVD)

What is  AT Avi =

What is  AATui =

 AAT =
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• ’s are the  eigen vectors of  with corresponding eigen values ’s


• ’s are the  eigen vectors of  with corresponding eigen values ’s


• Computing SVD takes  operations
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Singular Value Decomposition (SVD)

• Consider a full rank matrix  whose SVD is , and  
we want to find the best rank-  approximation of   
that minimizes the error 
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Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and 
no prediction is possible

n =
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Netflix challenge dataset



Matrix completion problem
• however, the ratings are not arbitrary, but people with similar 

tastes rate similarly

• such structure can be modeled using low dimensional 

representation of the data as follows

• we will find a set of principal component vectors 




• such that that ratings  of user , can be represented as  
               
                    
for some lower-dimensional  for -th user and some 




• for example,  means how horror movie fans like each 
of the  movies,


• and  means how much user  is fan of horror movies               
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Matrix completion
• let  be the ratings matrix, and 

assume it is fully observed, i.e. we know all the entries


• then we want to find  and 
 that approximates  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• if we observe all entries of , then we can find the best rank-  
approximation with SVD

X r



Matrix completion
• in practice, we only observe  partially


• let  denote  observed ratings for user  on movie 
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ
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• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the inner 
product of  (a column vector) and a column vector  


• we can also write it as 
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Matrix completion

• a natural approach to fit ’s and  to given training data is to solve  
                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples
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Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Clustering with -meansk
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Clustering images

[Goldberger et al.]

Set of Images
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Clustering web search results
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Some Data
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 


2. Randomly guess k cluster 
Center locations


3. Each datapoint finds out 
which Center it’s closest to.


4. Each Center finds the 
centroid of the points it 
owns…


5. …and jumps there

6. …Repeat until terminated!
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> Randomly initialize k centers

– (0) = (0),…, (0)


> Classify: Assign each point j∈{1,…N} to nearest center:

–  


> Recenter:  becomes centroid of its point:

–   


– Equivalent to ← average of its points!

μ μ1 μk

μi

μi

K-means



Which one is a snapshot of a converged -meansk

Example (a)

Example (c) Example (d)

Example (b)
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> -means is trying to minimize the following objective


> Optimize potential function:


> Via alternating minimization

> Fix μ, optimize C

k

Does -means converge??k
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Does -means converge?? k

> -means is trying to minimize the following objective


> Optimize potential function:


> Via alternating minimization

> Fix C, optimize μ

k



• there is only a finite set of values that  can take  
(  is large but finite)


• so there is only finite,  at most, values for cluster-centers also

• each time we update them, we will never increase the objective 

function 


• the objective is lower bounded by zero


• after  at most  steps, the algorithm must converge  
(as the assignments  cannot return to previous 
assignments in the course of -means iterations)
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Does -means converge??k



downsides of -means k
• it requires the number of clusters K to be specified by us

• the final solution depends on the initialization  

(does not find global minimum of the objective)

40

Trial 1

Trial 2

Initial position of centers       final converged assignment



-means++: a smart initializationk
Smart initialization: 
1. Choose first cluster center uniformly at random from data points

2. Repeat K-1 times

    3. For each data point xi, compute distance di to nearest cluster center

    4. Choose new cluster center from amongst data points, with probability 
of xi being chosen proportional to (di)2


• apply standard K-means after the initialization
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