Principal Component Analysis

Principal components is the subspace that minimizes the reconstruction error

$$\underset{u_1, \dots, u_r}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^n \|x_i - p_i\|_2^2$$

$$p_i = \sum_{i=1}^r (u_j^T x_i) u_j = \mathbf{U} \mathbf{U}^T x_i$$

where
$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}_{r \times r}$$

Q. How do we solve this optimization?

Minimizing reconstruction error to find principal components

$$\underset{U}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

Minimizing reconstruction error to find principal components

$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - UU^T x_i||_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ ||x_i||_2^2 - 2x_i^T UU^T x_i + x_i^T U U^T U U^T x_i \right\}$$

$$= \mathbf{I}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|x_i\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} x_i^T U U^T x_i$$

does not depend on U

$$= C - \sum_{i=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

Variance in direction u_j

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - \mathbf{U}\mathbf{U}^T x_i||_2^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Variance maximization vs. reconstruction error minimization

both give the same principal components as optimal solution

Maximizing variance to find principal components

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

We will solve it for r=1 case, and the general case follows similarly

maximize
$$\frac{1}{n} \sum_{i=1}^{n} (u^{T} x_{i})^{2}$$

$$\max_{u:\|u\|_2=1} u^T C u$$

Maximizing variance to find principal components

maximize_{$$u$$} $u^T \mathbf{C} u$ (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- the reason is that, because $u^T \mathbf{C} u \ge 0$ for all $u \in \mathbb{R}^d$, the optimal solution of (b) has to have $||u||_2^2 = 1$
- if it did not have $||u||_2^2 = 1$, say $||u||_2^2 = 0.9$, then we can just multiply this u by a constant factor of $\sqrt{10/9}$ and increase the objective by a factor of 10/9 while still satisfying the constraints

- we are maximizing the variance, while **keeping** u **small**
- this can be reformulated as an unconstrained problem, with Lagrangian encoding, to move the constraint into the objective

$$\max_{u} \min_{u} \underbrace{u^T \mathbf{C} u - \lambda \|u\|_2^2}_{F_{\lambda}(u)} \tag{c}$$

- this encourages small u as we want, and we can make this connection precise: there exists a (unknown) choice of λ such that the optimal solution of (c) is the same as the optimal solution of (b)
- further, for this choice of λ , the optimal u has $||u||_2 = 1$

Solving the unconstrained optimization

$$\begin{array}{ccc}
\text{maximize}_{u} & u^{T}\mathbf{C}u - \lambda \|u\|_{2}^{2} \\
& & F_{\lambda}(u)
\end{array}$$

• to find such λ and the corresponding u, we solve the unconstrained optimization, by setting the gradient to zero

$$\nabla_{u} F_{\lambda}(u) = 2\mathbf{C}u - 2\lambda u = 0$$

• the candidate solution satisfies: $\mathbf{C}u = \lambda u$, i.e. an eigenvector of \mathbf{C}

$$\text{maximize}_u u^T \mathbf{C} u$$

subject to
$$||u||_2^2 = 1$$

- let $(\lambda^{(1)}, u^{(1)})$ denote the largest eigenvalue and corresponding eigenvector of \mathbf{C} , with norm one, i.e. $||u^{(1)}||_2^2 = 1$
- The maximum is achieved when $u = u^{(1)}$

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can use Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- output: r-dimensional subspace U
- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of ${\bf C}$
- return $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^T\mathbf{U} = I$, $\mathbf{V}^T\mathbf{V} = I$.

What is
$$A^T A v_i =$$

$$AA^T =$$

What is
$$AA^Tu_i =$$

$$A^T A =$$

- v_i 's are the r eigen vectors of A^TA with corresponding eigen values S_{jj}^2 's
- ullet u_i 's are the r eigen vectors of AA^T with corresponding eigen values S_{jj}^2 's
- Computing SVD takes O(mnr) operations

Singular Value Decomposition (SVD)

• Consider a full rank matrix $A \in \mathbb{R}^{m \times n}$ whose SVD is $A = USV^T$, and we want to find the best rank-r approximation of A that minimizes the error

ullet The optimal rank-r approximation is $U_{1:r}S_{1:r,1:r}V_{1:r}^T$

Matrix completion for recommendation systems

Netflix challenge dataset

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

Matrix completion problem

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$
- such that that ratings $x_i \in \mathbb{R}^d$ of user i, can be represented as $x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$ = $\mathbf{U}a_i$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies,
- and $a_i[1]$ means how much user i is fan of horror movies

Matrix completion

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$ that approximates \mathbf{X}

• if we **observe all entries** of X, then we can find the best rank-r approximation with SVD

Matrix completion

- in practice, we only observe X partially
- let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- let v_j^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. \mathbf{X}_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_j (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_j^T a_i$

Matrix completion

• a natural approach to fit v_j 's and $a_i's$ to given training data is to solve $\min_{(i,j) \in S_{\text{train}}} (\mathbf{X}_{ji} - v_j^T a_i)^2$

- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

Clustering with k-means

Clustering images

[Goldberger et al.]

Clustering web search results

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

> Randomly initialize k centers

$$-\mu(\mathbf{0}) = \mu_1(\mathbf{0}), \dots, \mu_k(\mathbf{0})$$

> Classify: Assign each point j∈{1,...N} to nearest center:

$$- C^{(t)}(j) \leftarrow \arg\min_{i} ||\mu_i - x_j||^2$$

> Recenter: μ_i becomes centroid of its point:

$$- \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

Equivalent to µ_i← average of its points!

Which one is a snapshot of a converged k-means

Does *k*-means converge??

- > k-means is trying to minimize the following objective
- > Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- > Via alternating minimization
 - > Fix μ, optimize C

Does *k*-means converge??

- > k-means is trying to minimize the following objective
- > Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- > Via alternating minimization
 - > Fix C, optimize µ

Does *k*-means converge??

- there is only a finite set of values that $\{C(j)\}_{j=1}^n$ can take (k^n) is large but finite)
- so there is only finite, k^n at most, values for cluster-centers also
- each time we update them, we will never increase the objective function $\sum_{i=1}^k \sum_{j:C(j)=i} \|x_j \mu_i\|_2^2$
- the objective is lower bounded by zero
- after at most k^n steps, the algorithm must converge (as the assignments $\{C(j)\}_{j=1}^n$ cannot return to previous assignments in the course of k-means iterations)

downsides of k-means

- it requires the number of clusters K to be specified by us
- the final solution depends on the initialization (does not find global minimum of the objective)

k-means++: a smart initialization

Smart initialization:

- 1. Choose first cluster center uniformly at random from data points
- 2. Repeat *K-1* times
 - 3. For each data point x_i , compute distance d_i to nearest cluster center
- 4. Choose new cluster center from amongst data points, with probability of x_i being chosen proportional to $(d_i)^2$
- apply standard K-means after the initialization