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Recap of nearest neighbor methods
k = 1k = 15

• Principle of designing nearest neighbor methods 
• Consider a “good” estimator that cannot be implemented  

(because it requires the knowledge of ) 
e.g., for binary classification it is   
                                                                     

• Replace  by  (i.e.# of nearest neighbors of label ) among -NNs 
e.g.,                                                   
                                                                    

PX,Y(x, y)
̂y = + 1 if P(x, + 1) > P(x, − 1)

−1 if P(x, + 1) < P(x, − 1)
PX,Y(x, y) ky

x y k
̂y = + 1 if k+

x > k−
x

−1 if k+
x < k−

x

Best possible

k



Consider regression

x

y

• Principle of designing nearest neighbor methods 
• Consider a “good” estimator that cannot be implemented  

e.g., for regression optimal predictor is   =   

• Replace  by the empirical distribution among -nearest neighbors  

e.g.,              

̂y = #[y |x]
∫ y PX,Y(x, y) dy
∫ 1 PX,Y(x, y) dy

PX,Y(x, y) k

̂y =
∑j∈nearest neighbor yj

∑j∈nearest neighbor 1 =
∑j∈nearest neighbor yj

k



Nearest neighbor regression

{(xi, yi)})ni=1

• -nearest neighbor regressor is 

 

        

k
̂f(x) = 1

k ∑
j∈nearest neighbor

yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)x

y

Ind(xi is a k nearest neighbor)

x

1

ρk = distance to the k-th NN



Nearest neighbor regression

{(xi, yi)})ni=1

Why are far-away neighbors weighted 
same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

x

y

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) = 1
k ∑

j∈nearest neighbor
yj



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

 
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement 
• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help) 
• You can use other forms of distance (not just Euclidean) 
• Smoothing and local linear regression can improve 

performance (at the cost of higher variance) 
• With a lot of data, “local methods” have strong, simple 

theoretical guarantees.  
• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?



Principal Component Analysis



Motivation: dimensionality reduction

• it takes  memory to store data  with 

• but many real data have repeated patterns

• can we represent each image compactly,  

but still preserve most of information, by exploiting similarities?

n × d {xi}n
i=1 xi ∈ ℝd

Input images: Principal components:
 pixels per image 
 images 

 real values to store the data

d
n
d × n



Principal component analysis finds a 
compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 

r = 25

Input images: Principal components:
u1 ∈ ℝd u2



Principal component analysis finds a 
compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 


• we can represent each sample as 
a weighted linear combination 
of the principal components, and 
just store the weights  
(as opposed to all pixel values)

r = 25

Input images: Principal components:

Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

u1 ∈ ℝd u2

• Each image is now represented by  numbers 


• To store  images, it requires memory of only 
r = 25 a = (a[1], …, a[25])

n d × r + r × n ≪ d × n



Ground truths real face

average face
r = 1 r = 2 r = 3

10 principal components give a pretty good 
reconstruction of a face

x̄
x̄ + a[1]u1 x̄ + a[1]u1 + a[2]u2

r = 4

r = 10



Assumption

• Notice how we started with the average face 


• PCA is applied to 


• For simplicity, we will assume that ’s are centered such that 




• otherwise, without loss of generality,  
everything we do can be applied to the re-centered version of the data, 
i.e. , with 

x̄ = 1
n

n

∑
i=1

xi

{xi − x̄}n
i=1

xi1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ = 1

n

n

∑
i=1

xi



How do we define the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 

for all j, such that each data can be represented as linear combination 
of those direction vectors, i.e.  
        

r ≪ d
u1, …, ur ∈ ℝd

∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]



How do we find the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 
for all j, such that each data can be represented as linear combination of those 
direction vectors, i.e.  
        

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components 


• given a choice of ,  
the best representation  of   
is the projection of the point onto  
the subspace spanned by ’s, i.e.  
 

  




• we will use these without proving it

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

ai[ j] = uT
j xi

pi =
r

∑
j=1

(uT
j xi)

ai[ j]

uj

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

xi

pi

u1



Principal components is the subspace that  
minimizes the reconstruction error

   

 
where 

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize 
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r

subject to  UTU = Ir×r

Q. How do we solve this optimization?



Minimizing reconstruction error  
to find principal components

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r


