
Nearest neighbor methods x1

x2

Recap of nearest neighbor methods
k = 1k = 15

• Principle of designing nearest neighbor methods
• Consider a “good” estimator that cannot be implemented

(because it requires the knowledge of)
e.g., for binary classification it is

• Replace by (i.e.# of nearest neighbors of label) among -NNs
e.g.,

PX,Y(x, y)
̂y = + 1 if P(x, + 1) > P(x, − 1)

−1 if P(x, + 1) < P(x, − 1)
PX,Y(x, y) ky

x y k
̂y = + 1 if k+

x > k−
x

−1 if k+
x < k−

x

Best possible

k

Consider regression

x

y

• Principle of designing nearest neighbor methods
• Consider a “good” estimator that cannot be implemented

e.g., for regression optimal predictor is =

• Replace by the empirical distribution among -nearest neighbors

e.g.,

̂y = #[y |x]
∫ y PX,Y(x, y) dy
∫ 1 PX,Y(x, y) dy

PX,Y(x, y) k

̂y =
∑j∈nearest neighbor yj

∑j∈nearest neighbor 1 =
∑j∈nearest neighbor yj

k

Nearest neighbor regression

{(xi, yi)})ni=1

• -nearest neighbor regressor is 

 

k
̂f(x) = 1

k ∑
j∈nearest neighbor

yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)x

y

Ind(xi is a k nearest neighbor)

x

1

ρk = distance to the k-th NN

Nearest neighbor regression

{(xi, yi)})ni=1

Why are far-away neighbors weighted
same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

x

y

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) = 1
k ∑

j∈nearest neighbor
yj

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

 
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

Nearest Neighbor Overview

• Very simple to explain and implement
• No training! But finding nearest neighbors in large dataset at

test can be computationally demanding (KD-trees help)
• You can use other forms of distance (not just Euclidean)
• Smoothing and local linear regression can improve

performance (at the cost of higher variance)
• With a lot of data, “local methods” have strong, simple

theoretical guarantees.
• Without a lot of data, neighborhoods aren’t “local” and

methods suffer (curse of dimensionality).

Questions?

Principal Component Analysis

Motivation: dimensionality reduction

• it takes memory to store data with

• but many real data have repeated patterns

• can we represent each image compactly,  

but still preserve most of information, by exploiting similarities?

n × d {xi}n
i=1 xi ∈ ℝd

Input images: Principal components:
 pixels per image
 images

 real values to store the data

d
n
d × n

Principal component analysis finds a
compact linear representation

• patterns that capture the distinct
features of the samples is called
principal component  
(to be formally defined later)

• we use principal
components

r = 25

Input images: Principal components:
u1 ∈ ℝd u2

Principal component analysis finds a
compact linear representation

• patterns that capture the distinct
features of the samples is called
principal component  
(to be formally defined later)

• we use principal
components

• we can represent each sample as
a weighted linear combination
of the principal components, and
just store the weights  
(as opposed to all pixel values)

r = 25

Input images: Principal components:

Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

u1 ∈ ℝd u2

• Each image is now represented by numbers

• To store images, it requires memory of only
r = 25 a = (a[1], …, a[25])

n d × r + r × n ≪ d × n

Ground truths real face

average face
r = 1 r = 2 r = 3

10 principal components give a pretty good
reconstruction of a face

x̄
x̄ + a[1]u1 x̄ + a[1]u1 + a[2]u2

r = 4

r = 10

Assumption

• Notice how we started with the average face

• PCA is applied to

• For simplicity, we will assume that ’s are centered such that

• otherwise, without loss of generality,  
everything we do can be applied to the re-centered version of the data,
i.e. , with

x̄ = 1
n

n

∑
i=1

xi

{xi − x̄}n
i=1

xi1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ = 1

n

n

∑
i=1

xi

How do we define the principal components?

• Dimensionality reduction (for some):  
we would like to have a set of orthogonal directions , with

for all j, such that each data can be represented as linear combination
of those direction vectors, i.e.  
  

r ≪ d
u1, …, ur ∈ ℝd

∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

How do we find the principal components?

• Dimensionality reduction (for some):  
we would like to have a set of orthogonal directions , with
for all j, such that each data can be represented as linear combination of those
direction vectors, i.e.  
  

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components

• given a choice of ,  
the best representation of  
is the projection of the point onto  
the subspace spanned by ’s, i.e.  
 

  

• we will use these without proving it

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

ai[j] = uT
j xi

pi =
r

∑
j=1

(uT
j xi)

ai[j]

uj

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

xi

pi

u1

Principal components is the subspace that  
minimizes the reconstruction error

  

 
where

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

subject to UTU = Ir×r

Q. How do we solve this optimization?

Minimizing reconstruction error  
to find principal components

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

