Nearest neighbor methods




Recap of nearest neighbor methods

 Principle of designing nearest neighbor methods
e Consider a “good” estimator that cannot be implemented

(because it requires the knowledge of Py y(x, y))
e.g., for binary classificationitis y = + 1 if P(x,+ 1) > P(x, — 1)
—1ifP(x,+1) < P(x,—1)
o Replace Py y(x, y) by k) (i.e.# of nearest neighbors of label y) among k-NNs

e.g.,

y=+1ifk[ >k,
—lifk <k_
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Consider regression
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e Principle of designing nearest neighbor methods
e Consider a “good” estimator that cannot be implemented

_ [y Pyy(ey)dy
J1Pxy(x, ) dy 3= Prys

e Replace PX’Y(x, y) by the empirical distribution among k-nearest neighbors

e.g., for regression optimal predictoris y = E[y | x]

. Zjenearest neighbor Yj Zjenearest neighbor Yi
e.g., y = =
z:jenearest neighbor 1 k




Nearest neighbor regression
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. k-nearest neighbor regressor is

f) =% >

jenearest neighbor

- >, ¥; x Ind(x; is a k nearest neighbor)

Z?zl Ind(x; is a k nearest neighbor)

py, = distance to the k-th NN



Nearest neighbor regression
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. k-nearest neighbor regressor is
Z:;l v; X Ind(x; is a k nearest neighbor)
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Why are far-away neighbors weighted
same as close neighbors!

smoothing: K(z,y)
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Nearest neighbor regression
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. k-nearest neighbor regressor is n
. Z:’_lyi X Ind(x; is a k nearest neighbor) f(CC ) _ Zizl K(x()’ wi)y’i
Sflxp) = — 0) =

n
Z;;l Ind(x; is a k nearest neighbor) Zizl K(vaa 337,)



Nearest neighbor regression
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Why just average them?
. k-nearest neighbor regressor is

n 1 0y _ Z?:1 K (zo, @
f(XO) — ; Z Y; f(ﬂf()) - 2?21 K(ZUO,

jenearest neighbor




Nearest neighbor regression
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Local Linear Regression



Nearest Neighbor Overview

Very simple to explain and implement

No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

You can use other forms of distance (not just Euclidean)

Smoothing and local linear regression can improve
performance (at the cost of higher variance)

With a lot of data, “local methods” have strong, simple
theoretical guarantees.

Without a lot of data, neighborhoods aren’t “local” and

methods suffer (curse of dimensionality). Y
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Principal Component Analysis
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Motivation: dimensionality reduction

o ittakes n X d memory to store data {x;}"_, with x; € R?

e but many real data have repeated patterns

e can we represent each image compactly,
but still preserve most of information, by exploiting similarities?

:
:

d pixels per image
n images
d X n real values to store the data

i



Principal component analysis finds a
compact linear representation

Principal components:
e patterns that capture the distinct _#; € R® " u )
features of the samples is called j
principal component
(to be formally defined later)

e weuser = 25 principal
components




Principal component analysis finds a
compact linear representation

Principal components:

patterns that capture the distinct _#; € R U ‘

features of the samples is called
principal component
(to be formally defined later)

we use r = 25 principal
components

* we can represent each sample as

a weighted linear combination |7
of the principal components, and ¥
just store the weights ) Sl AN ol B R 4
(as opposed to all pixel values)  FESERNEGE \ (’] 7= AT

@ ~ alllu; + al2]u, + -+ + a[25]u,s

e Each image is now represented by r = 25 numbers a = (a[1], ..., a[25])

e To store n images, it requires memory of only'fl >é#r —I%rgkg n < dxXn
v ¢ )=,y



10 principal components give a pretty good
reconstruction of a face

average face x+a[llu; x+alllu, +al2]u,

Ground truths real face



Assumption

Notice how we started with the average face x = — Z X;

« PCAisappliedto {x; — X}i_,

. For S|mpI|C|ty, we will assume that x;’s are centered such that
PREL

. otherW|se without loss of generality,
everythlng we do can be applled to the re-centered version of the data,

Le. {x; —X}'_,, withXx = —Zx



How do we define the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € RY, with
llu;]|, = lfor all j, such that each data can be represented as linear combination
of those direction vectors, i.e. - -
x; & p; = alllu; + - + a;[rlu, xi[_l] -
: a[1]

X; = #ai:

alr)




How do we find the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € R?, with luill, =1

for all j, such that each data can be represented as linear combination of those
direction vectors, i.e.

x;, = p; = alllu; + - +ajlr]u, [ x,[1]]

! {ﬂ 4
e those direCtions that minimize the :
average reconstruction error for a dataset X = : —> a;, =

is called the principal components 2, a.tr]
e Pl - |4l

e given achoice of uy, ..., u,, =t x[d]
the best representation p; of x;
is the projection of the point onto
the subspace spanned by uj’s, e.

1]

a;Jj] = uijib/‘devv'Bh,

o
Di= 2 (”j‘%xl‘) U; O Q/?) i

j=1 ) e dvectlsn

a;[J]
e we will use these without proving it



Principal components is the subspace that
minimizes the reconstructi
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Q. How do we solve this optimization?



Minimizing reconstruction error
to find principal components

T T 12
minimize —Z lx, — UU" x,|5
U n

i=1

subjectto U'U=1_,



