
Nearest neighbor methods x1

x2



Recap of nearest neighbor methods
k = 1k = 15

• Principle of designing nearest neighbor methods

• Consider a “good” estimator that cannot be implemented  

(because it requires the knowledge of ) 

e.g., for binary classification it is   
                                                                    


• Replace  by  (i.e.# of nearest neighbors of label ) among -NNs 

e.g.,                                                   
                                                                    

PX,Y(x, y)
̂y = + 1 if P(x, + 1) > P(x, − 1)

−1 if P(x, + 1) < P(x, − 1)
PX,Y(x, y) ky

x y k
̂y = + 1 if k+

x > k−
x

−1 if k+
x < k−

x

Best possible

k



Consider regression

x

y

• Principle of designing nearest neighbor methods

• Consider a “good” estimator that cannot be implemented  

e.g., for regression optimal predictor is   =  


• Replace  by the empirical distribution among -nearest neighbors  

e.g.,              

̂y = 𝔼[y |x]
∫ y PX,Y(x, y) dy

∫ 1 PX,Y(x, y) dy
PX,Y(x, y) k

̂y =
∑j∈nearest neighbor yj

∑j∈nearest neighbor 1
=

∑j∈nearest neighbor yj

k



Nearest neighbor regression

{(xi, yi)})ni=1

• -nearest neighbor regressor is 

 

        

k
̂f(x) =

1
k ∑

j∈nearest neighbor
yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)x

y

Ind(xi is a k nearest neighbor)

x

1

ρk = distance to the k-th NN



Nearest neighbor regression

{(xi, yi)})ni=1

Why are far-away neighbors weighted 
same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

x

y

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) =
1
k ∑

j∈nearest neighbor
yj



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

 
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement

• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help)

• You can use other forms of distance (not just Euclidean)

• Smoothing and local linear regression can improve 

performance (at the cost of higher variance)

• With a lot of data, “local methods” have strong, simple 

theoretical guarantees. 

• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?



Principal Component Analysis



Motivation: dimensionality reduction

• it takes  memory to store data  with 


• but many real data have repeated patterns

• can we represent each image compactly,  

but still preserve most of information, by exploiting similarities?

n × d {xi}n
i=1 xi ∈ ℝd

Input images: Principal components:
 pixels per image

 images


 real values to store the data

d
n
d × n



Principal component analysis finds a 

compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 

r = 25

Input images: Principal components:
u1 ∈ ℝd u2



Principal component analysis finds a 

compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 


• we can represent each sample as 
a weighted linear combination 
of the principal components, and 
just store the weights  
(as opposed to all pixel values)

r = 25

Input images: Principal components:

Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

u1 ∈ ℝd u2

• Each image is now represented by  numbers 


• To store  images, it requires memory of only 

r = 25 a = (a[1], …, a[25])
n d × r + r × n ≪ d × n



Ground truths real face

average face
r = 1 r = 2 r = 3

10 principal components give a pretty good 
reconstruction of a face

x̄
x̄ + a[1]u1 x̄ + a[1]u1 + a[2]u2

r = 4

r = 10



Assumption

• Notice how we started with the average face 


• PCA is applied to 


• For simplicity, we will assume that ’s are centered such that 




• otherwise, without loss of generality,  
everything we do can be applied to the re-centered version of the data, 

i.e. , with 

x̄ =
1
n

n

∑
i=1

xi

{xi − x̄}n
i=1

xi
1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ =

1
n

n

∑
i=1

xi



How do we define the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 

for all j, such that each data can be represented as linear combination 
of those direction vectors, i.e.  
        

r ≪ d
u1, …, ur ∈ ℝd

∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]



How do we find the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 
for all j, such that each data can be represented as linear combination of those 
direction vectors, i.e.  
        

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components 


• given a choice of ,  
the best representation  of   
is the projection of the point onto  
the subspace spanned by ’s, i.e. 
 

  




• we will use these without proving it

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

ai[ j] = uT
j xi

pi =
r

∑
j=1

(uT
j xi)

ai[ j]

uj

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

xi

pi

u1



Principal components is the subspace that  
minimizes the reconstruction error

   

 
where 

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize 
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r

subject to  UTU = Ir×r

Q. How do we solve this optimization?



Minimizing reconstruction error  
to find principal components

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r



Minimizing reconstruction error  
to find principal components

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r










1
n

n

∑
i=1

∥xi − UUT xi∥2
2

=
1
n

n

∑
i=1

{∥xi∥2
2 − 2xT

i UUT xi + xT
i U UTU

⏟
=I

UT xi}
=

1
n

n

∑
i=1

∥xi∥2
2

does not depend on U

−
1
n

n

∑
i=1

xT
i UUT xi

= C −
r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

Variance in direction uj maximize 
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to  UTU = Ir×r



Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution



Maximizing variance to find principal components

maximize 
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to  UTU = Ir×r

We will solve it for  case,  
and the general case follows similarly

r = 1

maximize 
u:∥u∥2=1

1
n

n

∑
i=1

(uT xi)2

maximize 
u:∥u∥2=1

uTCu



Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• the reason is that, because  for all , the optimal 
solution of  has to have 


• if it did not have , say , then we can just multiply 
this  by a constant factor of  and increase the objective by a 
factor of  while still satisfying the constraints 

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9

maximizeu uTCu

 subject to ∥u∥2
2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)



• we are maximizing the variance, while keeping  small

• this can be reformulated as an unconstrained problem, with 

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small  as we want, and we can make this 
connection precise: there exists a (unknown) choice of  such 
that the optimal solution of  is the same as the optimal solution 
of 


• further, for this choice of ,  the optimal  has 

u

u
λ

(c)
(b)

λ u ∥u∥2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)



Solving the unconstrained optimization

• to find such  and the corresponding , we solve the 
unconstrained optimization, by setting the gradient to zero 
                           


• the candidate solution satisfies: ,       
i.e. an eigenvector of 


• let  denote the largest eigenvalue and corresponding 
eigenvector of , with norm one, i.e. 


• The maximum is. achieved when 

λ u

∇Fλ(u) = 2Cu − 2λu = 0
Cu = λu

C
(λ(1), u(1))

C ∥u(1)∥2
2 = 1

u = u(1)

maximizeu uTCu − λ∥u∥2
2

Fλ(u)



The principal component analysis

• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  

                              


• We can use Singular Value Decomposition (SVD) to find such 
eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components


• if we need  principal components, we take  eigenvectors 
corresponding to the largest  eigenvalues of  

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C



Algorithm: Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace 


• algorithm: 


• compute mean    


• compute covariance matrix 

            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via 
           

{xi}n
i=1 r ≪ d

r U

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr



Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and 
no prediction is possible

n =

= d



Matrix completion
• however, the ratings are not arbitrary, but people with similar tastes rate 

similarly

• such structure can be modeled using low dimensional representation of 

the data as follows

• we will find a set of principal component vectors 




• such that that ratings  of user , can be represented as  

               

                    

for some lower-dimensional  for -th user and some 


• for example,  means how horror movie fans like each of the 

 movies,


• and  means how much user  is fan of horror movies               

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i r ≪ d

u1 ∈ ℝd

d
ai[1] i



Matrix completion

• let  be the ratings matrix, and 
assume it is fully observed, i.e. we know all the entries


• then we want to find  and 

 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j
d n

U A≈

• if we observe all entries of , then we can solve  

      


 
which can be solved using PCA (i.e. SVD)

X
minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2



Matrix completion
• in practice, we only observe  partially


• let  denote  observed ratings for user  on movie 

X
Strain = {(iℓ, jℓ)}N

ℓ=1 N iℓ jℓ
X

 for user ai i
 for movie vT

j j
d n

U A≈

• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the inner product of  (a 

column vector) and a column vector  


• we can also write it as 

vT
j j U ai i A

i j Xji vT
j ai vj

ai
⟨vj, ai⟩ = vT

j ai



Matrix completion

• a natural approach to fit ’s and  to given training data is to solve  

                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples

vj a′￼is
minimizeU,A ∑

(i,j)∈Strain

(Xji − vT
j ai)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Questions?


