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Nearest neighbor methods




Recap of nearest neighbor methods

Test Error

e Principle of designing nearest neighbor methods
e Consider a “good” estimator that cannot be implemented

(because it requires the knowledge of Py y(x, y))
e.g., for binary classificationitis y = + 1 if P(x, + 1) > P(x, — 1)
—1ifP(x,+1)<Px,—-1)
e Replace PX,Y(x, y) by k (i.e.# of nearest neighbors of label y) among k-NNs

e.g.,

y=4+1ifk; > k_
—lifk <k;
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Consider regression
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e Principle of designing nearest neighbor methods
e Consider a “good” estimator that cannot be implemented

|y Py y(x,y)dy

J 1Py y(x,y)dy
e Replace PX,Y(x, y) by the empirical distribution among k-nearest neighbors

e.g., for regression optimal predictoris y = E[y]|x] =

. Z:jenearest neighbor Yj Z:jenearest neighbor Y
e.g., y = =
Z:jenearest neighbor 1 k




Nearest neighbor regression
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. k-nearest neighbor regressor is
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Nearest neighbor regression

Why are far-away neighbors weighted
same as close neighbors!

smoothing: K (z,y)

¢ S
o 3 ‘
(0] 3 2 -1 0 1 2 3
T T | T T | T X
0.0 02 04 I 06 08 1.0
. k-nearest neighbor regressor is
w9 > . -~ S K(xo, x)y;
. 2., ¥ X Ind(x; is a k nearest neighbor) f( ) _ i=1 » 1) 91
fx) = =55 TS K (w0, a0)
Zi=1 Ind(x; is a k nearest neighbor) i=1 05 Lq



Nearest neighbor regression
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. k-nearest neighbor regressor is n
. >, ¥ x Ind(x; is a k nearest neighbor) ]/L‘\( ) _ Zizl K(QE(), x’b)y’b
flxp) = = L0

n
Z;;l Ind(x; is a k nearest neighbor) Zi:l K(an 377,)




Nearest neighbor regression
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Why just average them?

- k-nearest neighbor regressor is >im1 K @
7()60) — l 2 l, Yj ( ) E i—1 K(xo,
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Nearest neighbor regression
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Local Linear Regression



Nearest Neighbor Overview

« Verysimple to explain and implement

« No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

o You can use other forms of distance (not just Euclidean)

« Smoothing and local linear regression can improve
performance (at the cost of higher variance)

o With alot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer (curse of dimensionality).



Questions?



Principal Component Analysis



Motivation: dimensionality reduction

o it takes 1 X d memory to store data {x;}"_, with x; € R?

e but many real data have repeated patterns

e can we represent each image compactly,
but still preserve most of information, by exploiting similarities?

3
:

i
4

d pixels per image
n images
d X n real values to store the data



Principal component analysis finds a

compact linear representation

Principal components:
e patterns that capture the distinct _#; € R® " u I
features of the samples is called N

principal component
(to be formally defined later)

e weuser = 25 principal
components




Principal component analysis finds a
compact linear representation

Prmupal components

patterns that capture the distinct 4 € R _
features of the samples is called '
principal component

(to be formally defined later)

we use r = 25 principal
components

we can represent each sample as ;
a weighted linear combination 7 =
of the principal components, and [}
just store the weights :
(as opposed to all pixel values)

@ ~ all]u, + al2]uy + -+ + a[25]uys

e Each image is now represented by r = 25 numbers a = (a[l], ..., a[25])

e To store n images, it requires memory ofonlyd X r+rXn <€ dXn



10 principal components give a pretty good
reconstruction of a face

average face x+a[llu; x+alllu, + al2]u,

Ground truths real face



Assumption

1
Notice how we started with the average face x = — Z X;

« PCAis applied to {x; — X},

) For S|mpI|C|ty, we will assume that x;’s are centered such that
PPREL

. otherW|se without loss of generality,
everything we do can be apphed to the re-centered version of the data,

Le. {x; — X} ,, withx = —Zx



How do we define the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € RY, with
llu;]|, = Tfor allj, such that each data can be represented as linear combination
of those direction vectors, i.e. - -
x, & p; = alllug+ - +afr]u, xi[.l] -
a1]

xi= ; # ai=

_xi [.d ] _

alr)




How do we find the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions u;, ..., u, € R, with luill, =1

for all |, such that each data can be represented as linear combination of those
direction vectors, i.e.

x, = p; = allu; + -+ afr]u, x;[1]

L L . a;[1]

* those directions that minimize the : )
average reconstruction error for a dataset X = . —> da; :
is called the principal components ai[”]

e given achoice of uy, ..., u, x[d]
the best representation p; of x;
is the projection of the point onto
the subspace spanned by uj’s, .e.

a[]]—uTx 1

Z(u X;) U, 0 /?9,'

a;l 1
e we will use these without proving it




Principal components is the subspace that
minimizes the reconstruction error

R
minimize —Z lx; — pilI3
n

Uiy .. U

" i=1
r
p; = Z (uijl-)uj = UUy,
j=1
where U = [U; U, -+ u] € R

1 n
minimize — — UUTx |2
mize 21 1x; %13
subjectto U'U=1_,

Q. How do we solve this optimization?



Minimizing reconstruction error
to find principal components

L 1 ¢ T w2
minimize —Z |lx; — UU" x,||5
v e

subjectto U'U=1_,



Minimizing reconstruction error
to find principal components

1 n
_lexi_UUTxi”% m|n|m|ze —Z lx; — UU” x|
=1

} _Zl { Ixill3 = 25/ UU" x; + %/ U UTU U'x } subject to U'U = L

n 1 n
2 T T
;Z (A E— ;in UUTx,
i=1 i=1

does not depend onuU

N
=C- Z Z(u x)? v

Variance in direction maX|m|ze Z Z (u x)2
l

subjectto U'U=1_,



Variance maximization vs. reconstruction error minimization

* both give the same principal components as optimal solution

X;
X
Pi

Reconstruction error minimization
- . . D . .
finds directions that minimize

the distances to p,’s x
-1

ariance maximization finds directions
that maximizes the spread of p;’s



Maximizing variance to find principal components

maX|m|ze Z Z(u Tx.)?

subjectto U'U=1_,

We will solve it for r = 1 case,
and the general case follows similarly

maximize — Z (u! x)?

w|jull,=1

maximize u’Cu
u:[|ull,=1



Maximizing variance to find principal components

maximize, u’ Cu (a)
subject to ||u||% =1

e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize, u’ Cu (b)
subject to ||u||% <1

e the reason is that, because u’Cu > 0 for all u € R4, the optimal
solution of (b) has to have ||u||§ =1

e ifit did not have ||u||3 = 1, say ||u||2 = 0.9, then we can just multiply
2

this u by a constant factor of 41/ 10/9 and increase the objective by a
factor of 10/9 while still satisfying the constraints



maximize, u’ Cu (b)

subject to ||u||% <1

we are maximizing the variance, while keeping 1 small

this can be reformulated as an unconstrained problem, with
Lagrangian encoding, to move the constraint into the objective

maximize, u’Cu — /1||u||% (¢)

F;(u)

this encourages small i« as we want, and we can make this
connection precise: there exists a (unknown) choice of A such
that the optimal solution of (¢) is the same as the optimal solution

of (D)

further, for this choice of A, the optimal u has ||u||, = 1



Solving the unconstrained optimization

maximize, u’Cu — A||ul|3

~

F ,1(”)

e to find such A and the corresponding u, we solve the
unconstrained optimization, by setting the gradient to zero

VF(u = 2Cu—-2u =0

e the candidate solution satisfies: Cu = Au,
i.e. an eigenvector of C

e let (1D, u)) denote the largest eigenvalue and corresponding
eigenvector of C, with norm one, i.e. ||u(1)||% =1

e The maximum is. achieved when u = u‘!



The principal component analysis

e so far we considered finding ONE principal component u & R4

* itis the eigenvector corresponding to the maximum eigenvalue
of the covariance matrix

1
C=—X'X e R
n

* We can use Singular Value Decomposition (SVD) to find such
eigen vector

* note that is the data is not centered at the origin, we should re-
center the data before applying SVD

* in general we define and use multiple principal components

e if we need r principal components, we take r eigenvectors
corresponding to the largest r eigenvalues of C



Algorithm: Principal Component Analysis

e input: data points {x;}’_,, target dimension r < d

e output: r-dimensional subspace U
 algorithm:
1

compute mean x = — X;

i=1
. compute covarlance matrix

Z (5 = 90 = B

e let(uy,...,u,) be the set of (normalized) eigenvectors with
corresponding to the largest r eigenvalues of C
e retunU=[U; Uy - U]

e further the data points can be represented compactly via
= Ul(x,— ) €R’



Matrix completion for recommendation systems
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e users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

e without any assumptions, the missing entries can be anything, and
no prediction is possible

Q.



Matrix completion

however, the ratings are not arbitrary, but people with similar tastes rate
similarly

such structure can be modeled using low dimensional representation of
the data as follows

we will find a set of principal component vectors
U — [ul u2 ceoe ur] E Rd)(r
such that that ratings Xl- & Rd of user l can be represented as
x, = all]uy + ---ajlrlu,
= Ug,
for some lower-dimensional d; € R for i-th user and some ¥ << d

for example, I/ll & Rd means how horror movie fans like each of the

d movies,

and Cli[ 1] means how much user I is fan of horror movies



Matrix completion

e et X = [xl Xy oo Xn] = Ran be the ratings matrix, and
assume it is fully observed, i.e. we know all the entries

« then we want to find U € Rer and
A = [al ay »°°° Cln] e R™M iat approximatesX

X ~ U A

Movie ] —
T n o if we observe all entries (r)zf X then we can solve
User [ minimizeU A Z ||Xl- — UCll”%

i=1
which can be solved using PCA (i.e. SVD)



Matrix completion

e in practice, we only observe X partially
— {(l.f, ]f) }];Izl denote Nobserved ratings for user l.Lp on moviejbp
i
X 1 & U A

| | T
. . by
B Cli for user [

o letO¢rain

T s
B B - —<—Vj for movie |

T . .
. let Vj denote the J-th row of U and Cll- denote I-th column of A

. . T
. then user I’s rating on movie J, i.e. X]l is approximated by Vj Cll-, which is the inner product of Vj (a

column vector) and a column vector Cli

« We can also write it as <Vj, Cll-> = VjTCll-



Matrix completion

/
. a natural approach to fit V.’s and Cll-S to given training data is to solve

J
.« . T 9)
MINIMIZey o E (X;; —vi a;)
(l 7j )EStrain
e this can be solved, for example via gradient descent or alternating
minimization
e this can be quite accurate, with small number of samples



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix
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0.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA

SR " [ R RN BESRR

- m [ ] - jm
- . . | | [
- EE. E B EE®E ' E B e .
B LT - n R
N = ol ey |
II | | - m -
Id.l- - - - - =
» . -
| | m
- . | | |
'm @ = - - - - -
] N
[ ]
F
- 1 =1 Ei
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X

Gradient descent output UA
O . o T Y
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sampled matrix

Sq uared error X;

0.75% sampled
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
i

1.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA squared error (X (UA),)?

ol B .l-l!l. 1.'=|E“H

1.50% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

-

squared error X — (UA);’

1.75% sampled



Questions?



