

Nearest neighbor methods

Recap of nearest neighbor methods

- **Principle** of designing nearest neighbor methods
 - Consider a "good" estimator that cannot be implemented (because it requires the knowledge of $P_{X,Y}(x,y)$)

e.g., for binary classification it is
$$\hat{y}=+1$$
 if $P(x,+1)>P(x,-1)$
$$-1 \text{ if } P(x,+1)< P(x,-1)$$

• Replace $P_{X,Y}(x,y)$ by k_x^y (i.e.# of nearest neighbors of label y) among k-NNs

e.g.,
$$\hat{y} = +1 \text{ if } k_x^+ > k_x^- \\ -1 \text{ if } k_x^+ < k_x^-$$

Consider regression

- Principle of designing nearest neighbor methods
 - Consider a "good" estimator that cannot be implemented

e.g., for regression optimal predictor is
$$\hat{y} = \mathbb{E}[y \mid x] = \frac{\int y P_{X,Y}(x,y) \, dy}{\int 1 P_{X,Y}(x,y) \, dy}$$

ullet Replace $P_{X,Y}(x,y)$ by the empirical distribution among k-nearest neighbors

e.g.,
$$\hat{y} = \frac{\sum_{j \in \text{nearest neighbor } y_j}}{\sum_{j \in \text{nearest neighbor } 1}} = \frac{\sum_{j \in \text{nearest neighbor } y_j}}{k}$$

k-nearest neighbor regressor is

$$\hat{f}(x) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$= \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\frac{1}{\rho_k} = \text{distance to the k-th NN}$$

Why are far-away neighbors weighted same as close neighbors!

•
$$k$$
-nearest neighbor regressor is
$$\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

•
$$k$$
-nearest neighbor regressor is
$$\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

k-nearest neighbor regressor is

$$\hat{f}(x_0) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

Why just average them?
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

$$\{(x_i, y_i)\}_{i=1}^n$$

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)} \qquad \widehat{f}(x_0) = b(x_0) + w(x_0)^T x_0$$

$$w(x_0), b(x_0) = \arg\min_{w,b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Questions?

Principal Component Analysis

Motivation: dimensionality reduction

- it takes $n \times d$ memory to store data $\{x_i\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$
- but many real data have repeated patterns
- can we represent each image compactly, but still preserve most of information, by exploiting similarities?

d pixels per image n images $d \times n$ real values to store the data

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components

Principal components: $\underline{u_1 \in \mathbb{R}^d}$

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components
- we can represent each sample as a weighted linear combination of the principal components, and just store the weights (as opposed to all pixel values)

Principal components: $u_1 \in \mathbb{R}^d$

$$\approx a[1]u_1 + a[2]u_2 + \dots + a[25]u_{25}$$

- Each image is now represented by r = 25 numbers a = (a[1], ..., a[25])
- To store *n* images, it requires memory of only $d \times r + r \times n \ll d \times n$

10 principal components give a pretty good reconstruction of a face

average face $\bar{x} + a[1]u_1 + a[1]u_1 + a[2]u_2$ r=1 r=2 r=3r = 4r = 10

Ground truths real face

Assumption

- Notice how we started with the average face $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- PCA is applied to $\{x_i \bar{x}\}_{i=1}^n$
- For simplicity, we will assume that x_i 's are centered such that $\frac{1}{n}\sum_{i=1}^{n}x_{i}=0$
- otherwise, without loss of generality, everything we do can be applied to the re-centered version of the data, i.e. $\{x_i - \bar{x}\}_{i=1}^n$, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

i.e.
$$\{x_i - \bar{x}\}_{i=1}^n$$
, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

How do we define the principal components?

• Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, \ldots, u_r \in \mathbb{R}^d$, with $\|u_j\|_2 = 1$ for all j, such that each data can be represented as linear combination of those direction vectors, i.e.

$$x_i \approx p_i = a_i[1]u_1 + \dots + a_i[r]u_r$$

$$x_{i} = \begin{bmatrix} x_{i}[1] \\ \vdots \\ \vdots \\ \vdots \\ x_{i}[d] \end{bmatrix} \longrightarrow a_{i} = \begin{bmatrix} a_{i}[1] \\ \vdots \\ a_{i}[r] \end{bmatrix}$$

How do we find the principal components?

• Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, \ldots, u_r \in \mathbb{R}^d$, with $\|u_j\|_2 = 1$ for all j, such that each data can be represented as linear combination of those direction vectors, i.e.

$$x_i \approx p_i = a_i[1]u_1 + \dots + a_i[r]u_r$$

- those directions that minimize the average reconstruction error for a dataset is called the principal components
- given a choice of u_1, \ldots, u_r , the best representation p_i of x_i is the projection of the point onto the subspace spanned by u_i 's, i.e.

$$a_i[j] = u_j^T x_i$$

$$p_i = \sum_{j=1}^r (u_j^T x_i) u_j$$

$$a_i[j]$$

we will use these without proving it

Principal components is the subspace that minimizes the reconstruction error

$$\underset{u_1, \dots, u_r}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^n \|x_i - p_i\|_2^2$$

$$p_i = \sum_{i=1}^r (u_j^T x_i) u_j = \mathbf{U} \mathbf{U}^T x_i$$

where
$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}_{r \times r}$$

Q. How do we solve this optimization?

Minimizing reconstruction error to find principal components

$$\underset{U}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

Minimizing reconstruction error to find principal components

$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - UU^T x_i||_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ ||x_i||_2^2 - 2x_i^T UU^T x_i + x_i^T U U^T U U^T x_i \right\}$$

$$= \mathbf{I}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|x_i\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} x_i^T U U^T x_i$$

does not depend on U

$$= C - \sum_{i=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

Variance in direction u_j

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - \mathbf{U}\mathbf{U}^T x_i||_2^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Variance maximization vs. reconstruction error minimization

both give the same principal components as optimal solution

Maximizing variance to find principal components

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

We will solve it for r=1 case, and the general case follows similarly

maximize
$$\frac{1}{n} \sum_{i=1}^{n} (u^{T} x_{i})^{2}$$

$$\max_{u:\|u\|_2=1} u^T C u$$

Maximizing variance to find principal components

maximize_{$$u$$} $u^T \mathbf{C} u$ (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- the reason is that, because $u^T \mathbf{C} u \ge 0$ for all $u \in \mathbb{R}^d$, the optimal solution of (b) has to have $||u||_2^2 = 1$
- if it did not have $||u||_2^2 = 1$, say $||u||_2^2 = 0.9$, then we can just multiply this u by a constant factor of $\sqrt{10/9}$ and increase the objective by a factor of 10/9 while still satisfying the constraints

- we are maximizing the variance, while **keeping** u **small**
- this can be reformulated as an unconstrained problem, with Lagrangian encoding, to move the constraint into the objective

$$\max_{u} \min_{u} \underbrace{u^T \mathbf{C} u - \lambda \|u\|_2^2}_{F_{\lambda}(u)} \tag{c}$$

- this encourages small u as we want, and we can make this connection precise: there exists a (unknown) choice of λ such that the optimal solution of (c) is the same as the optimal solution of (b)
- further, for this choice of λ , the optimal u has $||u||_2 = 1$

Solving the unconstrained optimization

$$\begin{array}{ccc}
\text{maximize}_{u} & u^{T}\mathbf{C}u - \lambda \|u\|_{2}^{2} \\
& & F_{\lambda}(u)
\end{array}$$

• to find such λ and the corresponding u, we solve the unconstrained optimization, by setting the gradient to zero

$$\nabla F_{\lambda}(u) = 2\mathbf{C}u - 2\lambda u = 0$$

- the candidate solution satisfies: $\mathbf{C}u = \lambda u$, i.e. an eigenvector of \mathbf{C}
- let $(\lambda^{(1)}, u^{(1)})$ denote the largest eigenvalue and corresponding eigenvector of \mathbb{C} , with norm one, i.e. $\|u^{(1)}\|_2^2 = 1$
- The maximum is. achieved when $u = u^{(1)}$

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can use Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- ullet output: \emph{r} -dimensional subspace \emph{U}
- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of ${\bf C}$
- return $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

Matrix completion for recommendation systems

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors

$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

• such that that ratings $\mathbf{X}_i \in \mathbb{R}^d$ of user i, can be represented as

$$x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$
$$= \mathbf{U}a_i$$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies,
- and $a_i[1]$ means how much user i is fan of horror movies

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d imes r}$ and

$$\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$$
 that approximates \mathbf{X}

ullet if we observe all entries of X, then we can solve $\text{minimize}_{\mathbf{U}, \mathbf{A}} \sum \|x_i - \mathbf{U}a_i\|_2^2$

which can be solved using PCA (i.e. SVD)

- ullet in practice, we only observe f X partially
- . Let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- . let v_j^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. X_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_j (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_j^T a_i$

• a natural approach to fit v_j 's and $a_i'S$ to given training data is to solve $\sum_{\mathbf{minimize_{U,A}}} (\mathbf{X}_{ji} - v_j^T a_i)^2$ $(i,j) \in S_{\text{train}}$

- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

Questions?