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• When we want to evaluate the quality of our estimated , we would 
like to be able to have (many) fresh samples of size  ,  
i.i.d. sampled from the ground truths distribution  

• Then, we can draw the conclusion that, say,  
this model has small variance
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Recall bias-variance tradeoff
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Linear regression with  
degree-3 polynomial features

Each green line is trained on  
fresh  samplesn



Recall bias-variance tradeoff
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• When we want to evaluate the quality of our estimated , we would 
like to be able to have (many) fresh samples of size  ,  
i.i.d. sampled from the ground truths distribution  

• Then, we can draw the conclusion that, say,  
this model has large variance  
(and much more, e.g., variance is larger when )

ŵ
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(x, y) ∼ PX,Y

x ≃ 1.0

x x

Linear regression with  
degree-20 polynomial features



Motivation for Bootstrap methods

being able to draw fresh samples 
from the ground truths distribution  
is quite useful in analyzing the quality of our estimation

PX,Y(x, y)



           The Bootstrap: Developed by Bradley Efron in 1979. 

• Cross validation estimates the test error ,  
averaged over  , but has limitations 

• Test error is informative, but how accurate is this 
number? (e.g., 3/5 heads vs. 30/50) 

• How do I get confidence intervals on statistics like the 
median or variance of a distribution? 

• Instead of the error for the entire dataset, what if  
I want to study the error for a particular example x?

%[(ŵT x − y)2]
(x, y) ∼ PX,Y

As we cannot get fresh samples in practice,  
we resorted to Cross-validation

• The name is from “pull oneself up by one’s bootstraps” 

• Bootstrap can estimate, for example,  
ℙy,"n

[y > ŵT
LSx + 0.01 |x]



(Non-parametric) Bootstrap method
Real World 

• (Unknown) true distribution  
 
 

• (Single) dataset i.i.d. from  
 

• (Single) Estimator 

PX,Y(x, y)

PX,Y
"n = {(x1, y1), …, (xn, yn)}

̂f ( ⋅ ) = h("n)

Bootstrap World 
• (Known) “true” distribution is empirical dist.  

 

• (Multiple resampling) dataset i.i.d. from 

 
for  

• (Multiple) Estimator 

"n

̂Pn(x, y) = 1
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∑
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1 , y(b)
1 ), …, (x(b)

n , y(b)
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b = 1,2,…, B
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Common applications of the bootstrap:
• Estimate parameters that escape simple analysis like the variance or 

median of an estimate
• Confidence intervals
• Estimates of error for a particular example x

D

Figures from Hastie et al.

Applications of Bootstrap

̂f(") ̂f (b) = ̂f ("(b)) for b ∈ {1,…,10} 95% confidence interval



Takeaways

Advantages:
• Bootstrap is very generally applicable.  

Build a confidence interval around anything
• Very simple to use
• Appears to give meaningful results even when the amount of data is very small



Takeaways

Advantages:
• Bootstrap is very generally applicable.  

Build a confidence interval around anything
• Very simple to use
• Appears to give meaningful results even when the amount of data is very small

Disadvantages
• Potentially computationally intensive
• Reliability relies on test statistic and rate of convergence of empirical CDF to true 

CDF, which is unknown (so we do not know how good Bootstrap is)
• Poor performance on “extreme statistics”  (e.g., the max) 

Further reading 
• “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 

Learning”, Yarin Gal, Zoubin Ghahramani, ICML 2016



Nearest neighbor methods x1

x2



One way to approximate optimal classifier
= local statistics

• Consider an example of binary classification on 1-dimensional 

• The problem is fully specified by the ground truths 

• Suppose for simplicity that 

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2

x

x

x

PX,Y(x, y)

samples with y = + 1

samples with y = − 1

• What is the Bayes optimal classifier 
that minimizes ?  
     
             

P( ̂y ≠ y |x)
̂y = + 1 if P(x, + 1) > P(x, − 1)

−1 if P(x, + 1) < P(x, − 1)

• How do we compare  
 and  

from samples?
P(y = + 1 |x) P(y = − 1 |x)



One way to approximate Bayes Classifier
= local statistics

• [R-D Reiss. Approximate distributions of order statistics: with applications to nonparametric statistics.  
Springer Science & Business Media, 2012.]

x

x
samples with y = + 1

• Denote the  as the number of samples within distance  from  with label , then 

                                    

as we increase  and decrease .

k+
r r x +1

k+
r

n
⟶ 2r × P(x |y = + 1)

n r

• What is the Bayes optimal classifier that 
minimizes ?  
     
              
 
 

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

   
 

P( ̂y ≠ y |x)
̂y = + 1 if P(x, + 1) > P(x, − 1)

−1 if P(x, + 1) < P(x, − 1)

k
k

̂y = + 1,  if  (# of +1 samples) > (# of -1 samples)
−1,  if  (# of +1 samples) < (# of -1 samples)

PX,Y(x, y)

x
samples with y = − 1



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



15 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures from Hastie et al

k



Notable distance metrics  
(and their level sets)

L1 norm (taxi-cab)

L-infinity (max) norm

Mahalanobis norm: d(x, y) = (x − y)T M (x − y)

L2 norm : d(x, y) = ∥x − y∥2



1 nearest neighbor

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

• Let  denote the nearest neighbor at a point  
• First note that as  
• Let denote the Bayes error rate 
• At a point ,  

• Case 1: nearest neighbor is , which happens with   
and the error rate is  

• Case 2: nearest neighbor is , which happens with   
and the error rate is  

• The average error of a 1-NN is 
          +   

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)



Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
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Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?



Nearest neighbor regression

{(xi, yi)})ni=1
• What is the optimal classifier that 

minimizes MSE ?  
                
            

• Recall that 

    

• -nearest neighbor regressor is 

 

        

%[( ̂y − y)2]
̂y = %[y |x]

k+
r

n
⟶ 2r × P(x |y = + 1)

k
̂f(x) = 1

k ∑
j∈nearest neighbor

yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

Why are far-away neighbors weighted 
same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) = 1

k ∑
j∈nearest neighbor

yj

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) = 1

k ∑
j∈nearest neighbor

yj

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) = 1
k ∑

j∈nearest neighbor
yj



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression



Nearest Neighbor Overview

• Very simple to explain and implement 
• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help) 
• You can use other forms of distance (not just Euclidean) 
• Smoothing and local linear regression can improve 

performance (at the cost of higher variance) 
• With a lot of data, “local methods” have strong, simple 

theoretical guarantees.  
• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?


