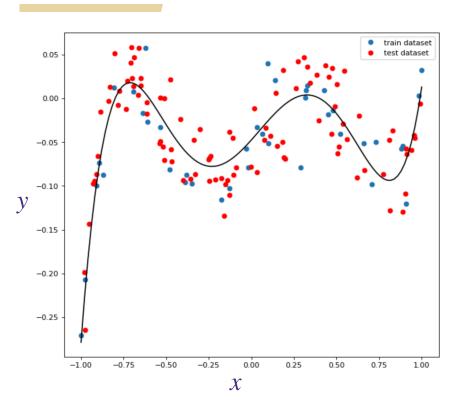
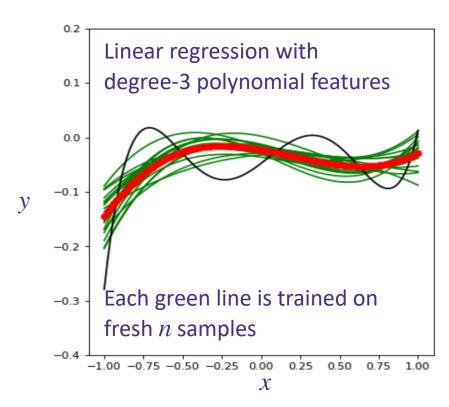


Bootstrap

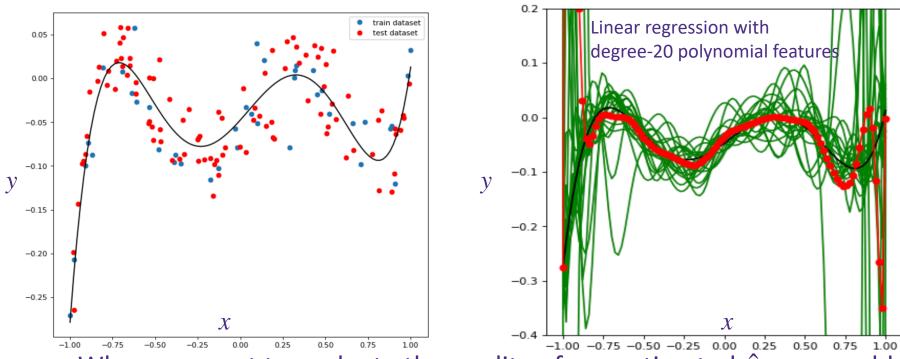
Recall bias-variance tradeoff





- When we want to evaluate the quality of our estimated \hat{w} , we would like to be able to have (many) **fresh samples** of size n, i.i.d. sampled from the ground truths distribution $(x,y) \sim P_{X,Y}$
- Then, we can draw the conclusion that, say, this model has small variance

Recall bias-variance tradeoff



- When we want to evaluate the quality of our estimated \hat{w} , we would like to be able to have (many) **fresh samples** of size n, i.i.d. sampled from the ground truths distribution $(x,y) \sim P_{X,Y}$
- Then, we can draw the conclusion that, say, this model has large variance (and much more, e.g., variance is larger when $x \simeq 1.0$)

Motivation for Bootstrap methods

being able to draw fresh samples from the ground truths distribution $P_{X,Y}(x,y)$ is quite useful in analyzing the quality of our estimation

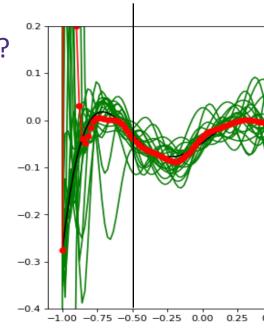
As we cannot get fresh samples in practice, we resorted to Cross-validation

- Cross validation estimates the test error $\mathbb{E}[(\hat{w}^Tx-y)^2]$, averaged over $(x,y)\sim P_{X,Y}$, but has limitations
 - Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
 - How do I get confidence intervals on statistics like the median or variance of a distribution?
 - Instead of the error for the entire dataset, what if
 I want to study the error for a particular example x?

The Bootstrap: Developed by Bradley Efron in 1979.

- The name is from "pull oneself up by one's bootstraps"
- Bootstrap can estimate, for example,

$$\mathbb{P}_{y,\mathcal{D}_n}[y > \hat{w}_{LS}^T x + 0.01 \mid x]$$

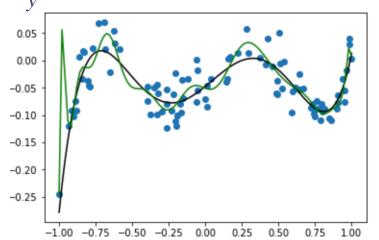


(Non-parametric) Bootstrap method

Real World

• (Unknown) true distribution $P_{X,Y}(x,y)$

• (Single) Estimator
$$\hat{f}(\cdot) = h(\mathcal{D}_n)$$



Bootstrap World

• (Known) "true" distribution is empirical dist. \mathcal{D}_n

$$\hat{P}_n(x, y) = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

• (Multiple resampling) dataset i.i.d. from \hat{P}_n

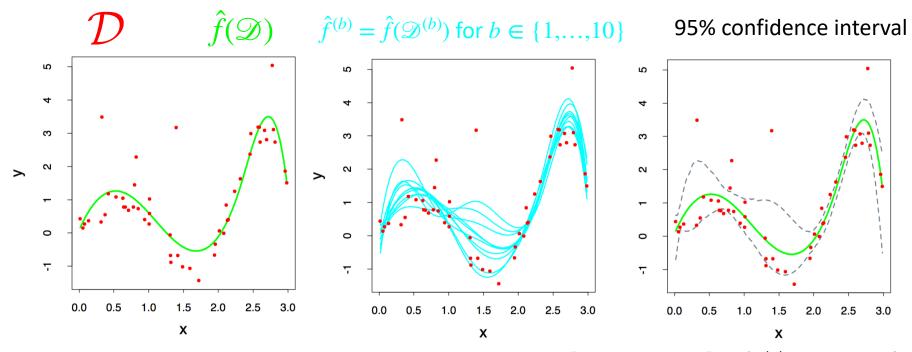
$$\mathcal{D}_n^{(b)} = \{(x_1^{(b)}, y_1^{(b)}), \dots, (x_n^{(b)}, y_n^{(b)})\}$$
for $b = 1, 2, \dots, B$

• (Multiple) Estimator $\hat{f}^{(b)}(\cdot) = h(\mathcal{D}_n^{(b)})$

Applications of Bootstrap

Common applications of the bootstrap:

- Estimate parameters that escape simple analysis like the variance or median of an estimate
- Confidence intervals
- Estimates of error for a particular example x



Figures from Hastie et al.

the largest value ν such that $\frac{1}{B} \sum_{b=1}^{B} \mathbf{1} \{ \hat{f}_b(x) \leq \nu \} \leq .05$,

Takeaways

Advantages:

- Bootstrap is very generally applicable.
 Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small

Takeaways

Advantages:

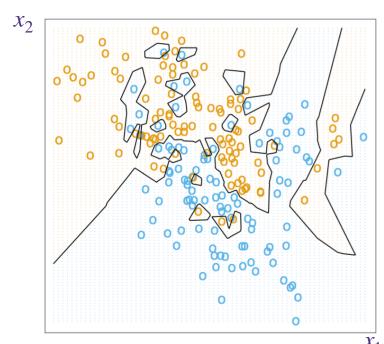
- Bootstrap is very generally applicable.
 Build a confidence interval around anything
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small

Disadvantages

- Potentially computationally intensive
- Reliability relies on test statistic and rate of convergence of empirical CDF to true CDF, which is unknown (so we do not know how good Bootstrap is)
- Poor performance on "extreme statistics" (e.g., the max)

Further reading

 "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning", Yarin Gal, Zoubin Ghahramani, ICML 2016



Nearest neighbor methods

One way to approximate optimal classifier = local statistics

- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x,y)$
- Suppose for simplicity that $P_Y(y=+1)=P_Y(y=-1)=1/2$

• What is the Bayes optimal classifier that minimizes $P(\hat{y} \neq y \mid x)$?

$$\hat{y} = +1 \text{ if } P(x, +1) > P(x, -1)$$

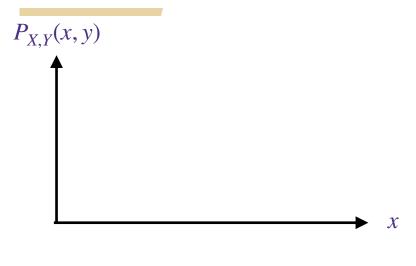
-1 if $P(x, +1) < P(x, -1)$

samples with y = +1

How do we compare
Y P(y = +1 | x) and P(y = −1 | x) from samples?

samples with y = -1

One way to approximate Bayes Classifier = local statistics



• What is the Bayes optimal classifier that minimizes $P(\hat{y} \neq y | x)$?

$$\hat{y} = +1 \text{ if } P(x, +1) > P(x, -1) \\ -1 \text{ if } P(x, +1) < P(x, -1)$$

 k-nearest neighbors classifier considers the k-nearest neighbors and takes a majority vote

samples with
$$y = +1$$

 $\hat{y} = +1$, if (# of +1 samples) > (# of -1 samples) -1, if (# of +1 samples) < (# of -1 samples)

samples with y = -1

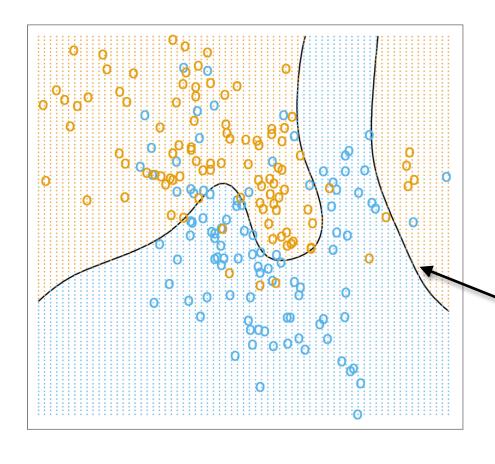
• Denote the k_r^+ as the number of samples within distance r from x with label +1, then

$$\frac{k_r^+}{r} \longrightarrow 2r \times P(x \mid y = +1)$$

as we increase n and decrease r.

• [R-D Reiss. Approximate distributions of order statistics: with applications to nonparametric statistics. Springer Science & Business Media, 2012.]

Some data, Bayes Classifier



Training data:

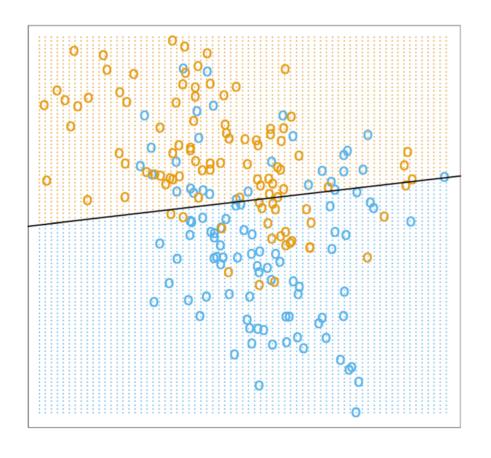
- True label: +1
- True label: -1

Optimal "Bayes" classifier:

$$\mathbb{P}(Y=1|X=x) = \frac{1}{2}$$

- Predicted label: +1
- Predicted label: -1

Linear Decision Boundary



Training data:

True label: +1

True label: -1

Learned:

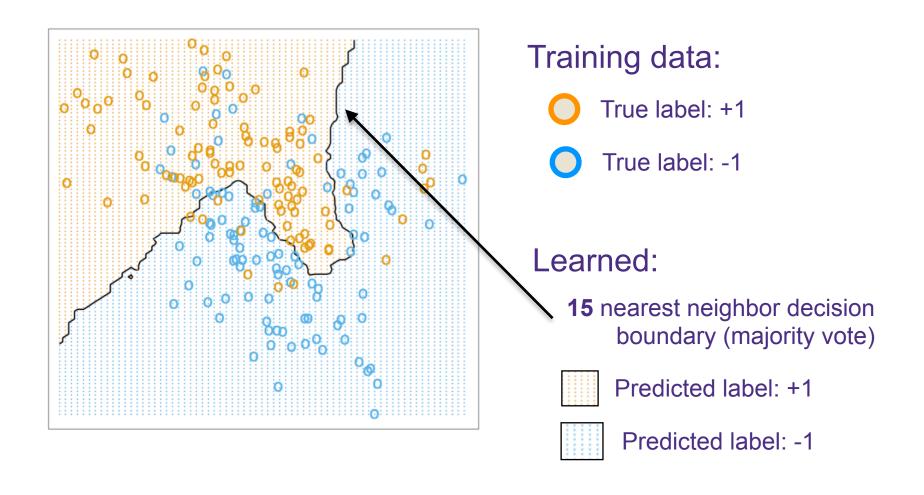
Linear Decision boundary

$$x^T w + b = 0$$

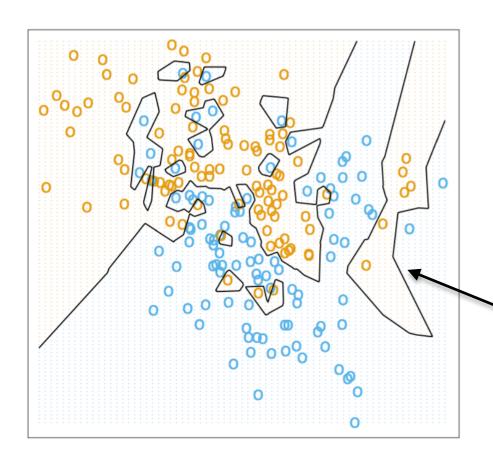
Predicted label: +1

Predicted label: -1

15 Nearest Neighbor Boundary



1 Nearest Neighbor Boundary



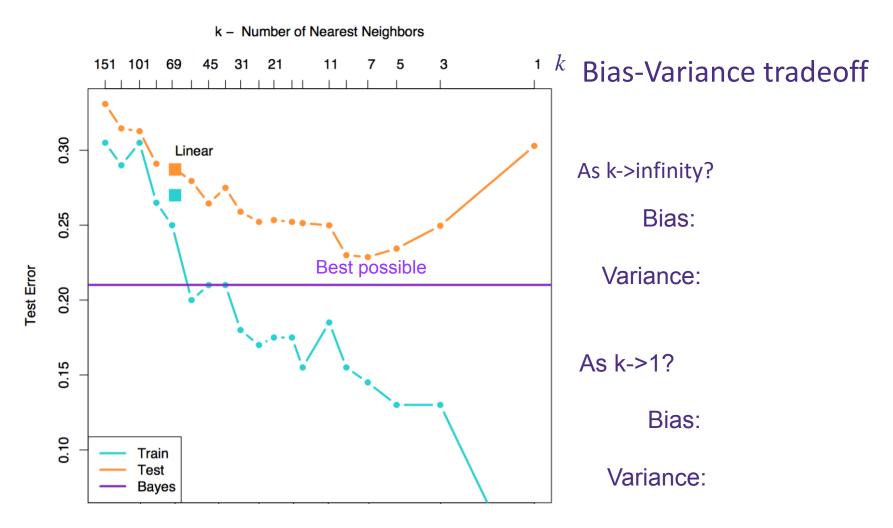
Training data:

- True label: +1
- True label: -1

Learned:

- 1 nearest neighbor decision boundary (majority vote)
 - Predicted label: +1
 - Predicted label: -1

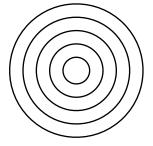
k-Nearest Neighbor Error

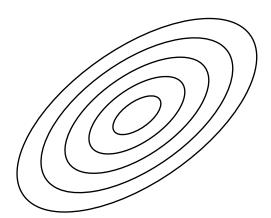


Figures from Hastie et al

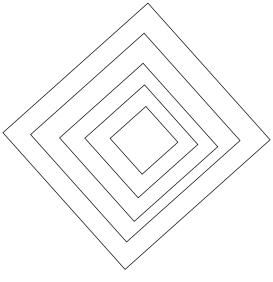
Notable distance metrics (and their level sets)

 L_2 norm : $d(x, y) = ||x - y||_2$

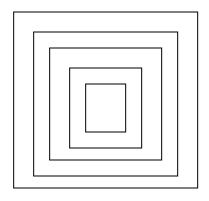




Mahalanobis norm: $d(x, y) = (x - y)^T M (x - y)$



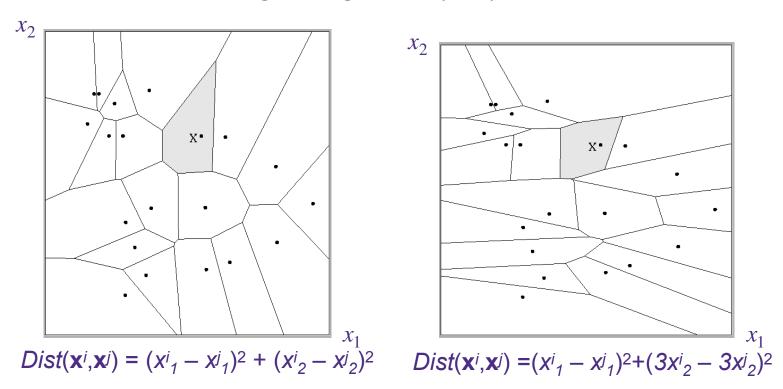
L₁ norm (taxi-cab)



L-infinity (max) norm

1 nearest neighbor

One can draw the nearest-neighbor regions in input space.



The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

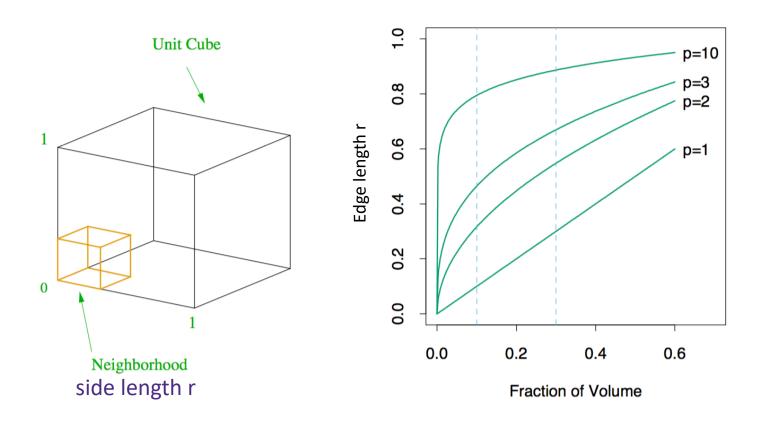
$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let x_{NN} denote the nearest neighbor at a point x
- First note that as $n \to \infty$, $P(y = +1 \mid x_{NN}) \to P(y = +1 \mid x)$
- Let $p^* = \min\{P(y = +1 \mid x), P(y = -1 \mid x)\}$ denote the Bayes error rate
- At a point *x*,
 - Case 1: nearest neighbor is +1, which happens with $P(y=+1 \mid x)$ and the error rate is $P(y=-1 \mid x)$
 - Case 2: nearest neighbor is +1, which happens with $P(y=-1 \mid x)$ and the error rate is $P(y=+1 \mid x)$
- The average error of a 1-NN is

$$P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p*(1-p*)$$

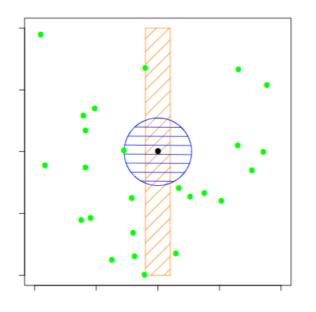
Curse of dimensionality Ex. 1

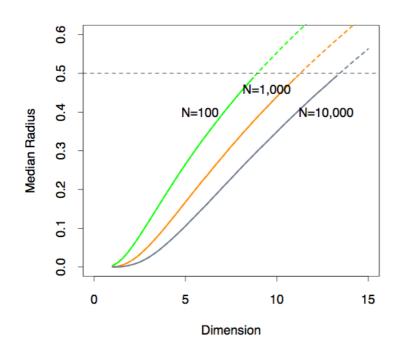


X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

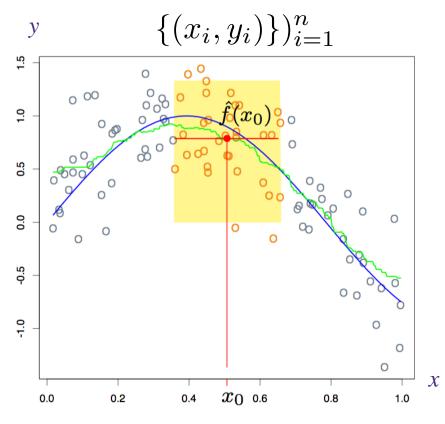
Curse of dimensionality Ex. 2

 $\{X_i\}_{i=1}^n$ are uniformly distributed over $[-.5,.5]^p$.





What is the median distance from a point at origin to its 1NN?



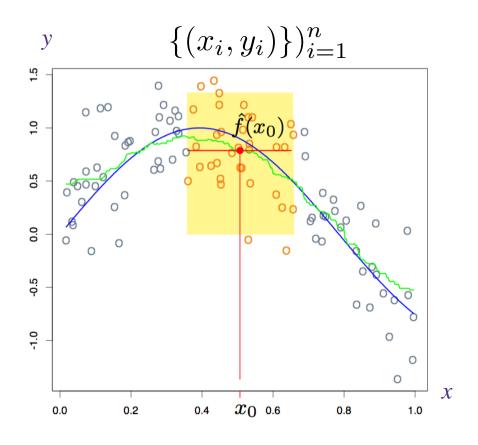
- What is the optimal classifier that minimizes $MSEE[(\hat{y} y)^2]$? $\hat{y} = E[y | x]$
- Recall that

$$\frac{k_r^+}{n} \longrightarrow 2r \times P(x \mid y = +1)$$

• k-nearest neighbor regressor is

$$\hat{f}(x) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$= \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$



Why are far-away neighbors weighted same as close neighbors!

smoothing:
$$K(x,y)$$

80

 (x,y)

Epanechnikov
Tri-cube
Gaussian

-3

-2

-1

0

1

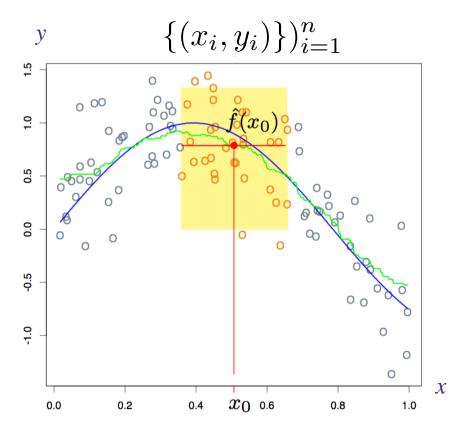
2

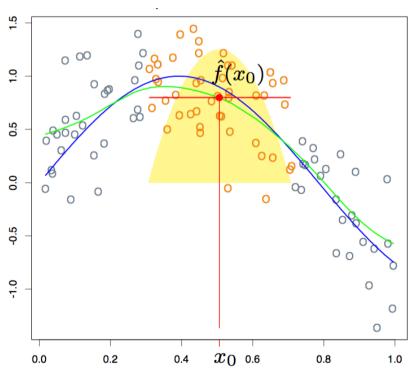
3

k-nearest neighbor regressor is

$$\hat{f}(x_0) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

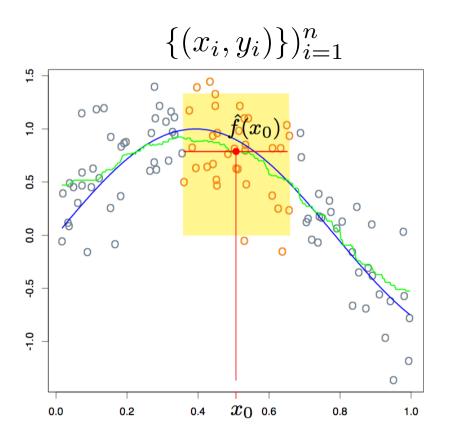




k-nearest neighbor regressor is

$$\hat{f}(x_0) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$



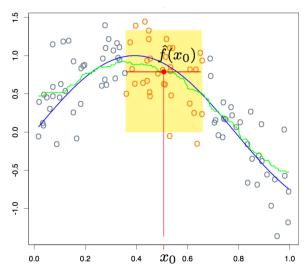
0 00 0.0 -0.5 x_0 0.6 0.0 0.2 0.4 8.0 1.0

k-nearest neighbor regressor is

$$\hat{f}(x_0) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

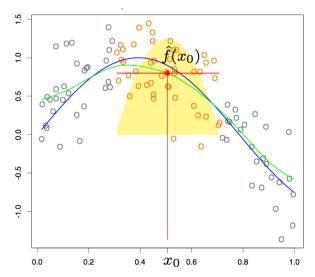
Why just average them?
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

$$\{(x_i, y_i)\}_{i=1}^n$$

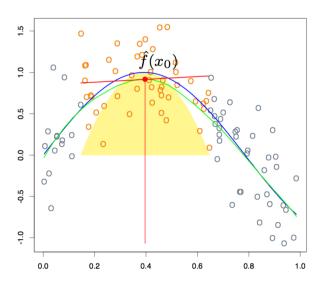


$$\mathcal{N}_k(x_0) = k$$
-nearest neighbors of x_0

$$\widehat{f}(x_0) = \sum_{x_i \in \mathcal{N}_k(x_0)} \frac{1}{k} y_i$$



$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$



$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)} \qquad \widehat{f}(x_0) = b(x_0) + w(x_0)^T x_0$$

$$w(x_0), b(x_0) = \arg\min_{w,b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Questions?