(1) 1-1W 3 Due Next Friday start Early (2) Next Thusday: all sections -> office hours # **Convolutional Neural Network** ### **Multi-layer Neural Network** $$a^{(1)} = x$$ $$z^{(2)} = \Theta^{(1)}a^{(1)}$$ $$a^{(2)} = g(z^{(2)})$$ $$\vdots$$ $$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$ $$a^{(l+1)} = g(z^{(l+1)})$$ $$\vdots$$ $$\hat{y} = a^{(L+1)}$$ $$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$ $$g(z) = \frac{1}{1 + e^{-z}}$$ Binary Logistic Regression depth The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by **allowable edges**. wilth The neural network architecture is defined by the number of layers, and the number of nodes in each layer, but also by allowable edges. We say a layer is **Fully Connected (FC)** if all linear mappings from the current layer to the next layer are permissible. $$\mathbf{\underline{a}}^{(k+1)} = g(\Theta \mathbf{a}^{(k)}) \quad \text{for any } \Theta \in \mathbb{R}^{n_{k+1} \times n_k}$$ A lot of parameters!! $$n_1 n_2 + n_2 n_3 + \cdots + n_L n_{L+1}$$ in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image. ve (> quition objects are often localized in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image. VS. Similarly, to identify edges or other local structure, it makes sense to only look at local information each note has $$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix}$$ meters: n^2 $$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & 0 & 0 & 0 \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & 0 & 0 \\ 0 & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & 0 \\ 0 & 0 & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ 0 & 0 & 0 & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix}$$ 3n - 2 Parameters: $$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$ VS. $$N_{j} = A(D^{j,j-1} \Omega^{j-1} + D^{j,j} \Omega^{j-1}$$ m: # sf (suncting) m=3 Mirror/share local weights everywhere (e.g., structure equally likely to be anywhere in image) $$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix}$$ n^2 $$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & 0 & 0 & 0 \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & 0 & 0 \\ 0 & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & 0 \\ 0 & 0 & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ 0 & 0 & 0 & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix}$$ $\mathbf{a}^{(k+1)}$ $\mathbf{a}^{(k)}$ $$\begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix}$$ Parameters: $$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$ VS. $$3n - 2$$ $$\mathbf{a}_{i}^{(k+1)} = g \left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)} \right)$$ #### **Fully Connected (FC) Layer** $$\begin{bmatrix} \Theta_{0,0} & \Theta_{0,1} & \Theta_{0,2} & \Theta_{0,3} & \Theta_{0,4} \\ \Theta_{1,0} & \Theta_{1,1} & \Theta_{1,2} & \Theta_{1,3} & \Theta_{1,4} \\ \Theta_{2,0} & \Theta_{2,1} & \Theta_{2,2} & \Theta_{2,3} & \Theta_{2,4} \\ \Theta_{3,0} & \Theta_{3,1} & \Theta_{3,2} & \Theta_{3,3} & \Theta_{3,4} \\ \Theta_{4,0} & \Theta_{4,1} & \Theta_{4,2} & \Theta_{4,3} & \Theta_{4,4} \end{bmatrix}$$ $$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right)$$ #### Convolutional (CONV) Layer (1 filter) $$\begin{bmatrix} \theta_1 & \theta_2 & 0 & 0 & 0 \\ \theta_0 & \theta_1 & \theta_2 & 0 & 0 \\ 0 & \theta_0 & \theta_1 & \theta_2 & 0 \\ 0 & 0 & \theta_0 & \theta_1 & \theta_2 \\ 0 & 0 & 0 & \theta_0 & \theta_1 \end{bmatrix} m=3$$ $$\mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{n-1} \Theta_{i,j} \mathbf{a}_{j}^{(k)}\right) \qquad \mathbf{a}_{i}^{(k+1)} = g\left(\sum_{j=0}^{m-1} \theta_{j} \mathbf{a}_{i+j}^{(k)}\right) = g([\theta * \mathbf{a}^{(k)}]_{i})$$ Convolution* $$heta = (heta_0, \dots, heta_{m-1}) \in \mathbb{R}^m$$ is referred to as a "filter" $$(\theta * x)_i = \sum_{j=0}^{m-1} \theta_j x_{i+j}$$ Input $x \in \mathbb{R}^n$ Filter $\theta \in \mathbb{R}^m$ Output $\theta * x$ ### 2d Convolution Layer #### Example: 200x200 image - Fully-connected, 400,000 hidden units = 16 billion parameters - Locally-connected, 400,000 hidden units 10x10 fields = 40 million params - Local connections capture local dependencies ### Convolution of images (2d convolution) I * K ## Convolution of images | $(I\ast K)(i,j) =$ | \sum | $\sum I(i+m,j+n)K(m,n)$ | |--------------------|--------|-------------------------| | | m | n | hand cvafted / filters MV: Learn filters | Operation | Filter K | Convolved $I*F$ | |----------------------------------|--|-----------------| | Edge detection | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ | | | | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ | | | | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ | | | Sharpen | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$ | | | Box blur
(normalized) | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ | | | Gaussian blur
(approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ | | ### Stacking convolved images $$x \in \mathbb{R}^{n \times n \times r}$$ ### Stacking convolved images ### **Pooling** Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region" ### Pooling Convolution layer ### Flattening Flatten into a single vector of size 14*14*64=12544 ### **Training Convolutional Networks** networks (CNN) are just regular fully connected (FC) neural networks with some connections removed. **Train with SGD!** ### **Training Convolutional Networks** #### Real example network: LeNet Real example network: LeNet ### Remarks - Convolution is a fundamental operation in signal processing. Instead of hand-engineering the filters (e.g., Fourier, Wavelets, etc.) Deep Learning learns the filters and CONV layers with back-propagation, replacing fully connected (FC) layers with convolutional (CONV) layers - **Pooling** is a dimensionality reduction operation that summarizes the output of convolving the input with a filter - Typically the last few layers are **Fully Connected (FC)**, with the interpretation that the CONV layers are feature extractors, preparing input for the final FC layers. Can replace last layers and retrain on different dataset+task. - Just as hard to train as regular neural networks. - More exotic network architectures for specific tasks #### Real networks