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Neural Networks

• Origins: Algorithms that try to mimic the brain. 
• Widely used in 80s and early 90s; popularity diminished in late 90s. 
• Recent resurgence from 10s: state-of-the-art techniques for many 

applications:  
• Computer Vision 
• Natural language processing 
• Speech recognition 
• Decision-making / control problems (AlphaGo, Dota, robots) 

• Limited theory: 
• Non-convexity 
• Model are complex but generalization error is small 
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Neural Networks

This week: 
1.Definitions of neural networks 

2.Training neural networks: 
1.Algorithm: back propagation 
2.Putting it to work 

3.Neural network architecture design: 
1.Convolutional neural network Computer vision
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 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'
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Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary 
Logistic 
Regression

L depth

on 0 ol
O

ya

lastly
our prediction

CEID



Multi-layer Neural Network - Binary Classification
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by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
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Multi-layer Neural Network - Regression
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Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)
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