Everything up to today is about linear x, $\phi(w)$ x, $v^{7}\phi(x)$

Neural Networks

Neural Networks

- Origins: Algorithms that try to mimic the brain.
 Widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence from 10s: state-of-the-art techniques for many applications:
 - Computer Vision 2012 Alex Net
 - Natural language processing
 - Speech recognition
 - Decision-making / control problems (AlphaGo, Dota, robots)
- Limited theory:
 - Non-convexity SGI) (an optimize well
 - Model are complex but generalization error is small

Neural Networks

This week:

- 1.Definitions of neural networks
- 2. Training neural networks:
 - 1. Algorithm: back propagation
 - 2. Putting it to work
- 3. Neural network architecture design:
 - 1. Convolutional neural network Computer Vision

intermed inte Loye **Neural Networks** outent layer juput XERd Jose / neuron/unit each link how weight (real number) each node has

1) suport

2) activation function

3) output

4-3

Single Node

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\text{Sigmoid (logistic) activation function: } g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\text{Sigmoid (logistic) activation function: } g(z) = \frac{1}{1 + e^{-z}}$$

Layer 1 (Input Layer)

Layer 2

(Hidden Layer)

Layer 3

(Output Layer)

11 Slide by Andrew Ng

 $a_i^{(j)}$ = "activation" of unit i in layer j $\Theta^{(j)}$ = weight matrix stores parameters from layer j to layer j + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1} \times (s_j+1)$.

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

$$a^{(1)} = x$$

$$a^{(2)} = g(\Theta^{(1)}a^{(1)})$$

$$\vdots$$

$$a^{(l+1)} = g(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = a^{(2)}$$

$$a^{(2)} = a^{(3)}$$

$$a^{(4)}$$

$$\widehat{y} = g(\Theta^{(L)}a^{(L)})$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$

$$G(z) = \frac{1}{1 + e^{-z}}$$
Binary
Logistic
Regression

Multi-layer Neural Network - Binary Classification

Multi-layer Neural Network - Binary Classification
$$\varphi = g\left(\Theta^{(q)}\alpha^{(q)}\right) = g\left(\Theta^{(d)}\Theta^{(l)}\Theta^{(l)}\alpha^{(l)}\right)$$

$$a^{(1)} = x$$

$$a^{(2)} = \sigma(\Theta^{(1)}a^{(1)})$$

$$\vdots$$

$$a^{(l+1)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = a^{(2)}$$

$$a^{(3)}$$

$$a^{(4)}$$

$$\widehat{y} = g(\Theta^{(L)}a^{(L)})$$
 Relu
$$\widehat{y} = \frac{1}{2}$$

$$\begin{aligned} & \frac{\mathcal{G}_{\text{and}}(x)}{L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})} \\ & L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \\ & L(y, \hat{y}) = \alpha \text{ function of } \theta : \text{Nu-convex} \\ & \sigma(z) = \max\{0, z\} \ \ g(z) = \frac{1}{1 + e^{-z}} \text{ Binary Logistic Regression} \end{aligned}$$

Multiple Output Units: One-vs-Rest

Pedestrian

7= (;) O

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}$$
 and $h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}$

Motorcycle loss = (vosl-entropy) Truck loss = (vosl-entropy) $l(ho(y), y) = \sum_{k=1}^{K} -losy[ho(y)_{k}] \cdot y_{k}$ $h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}$ $vosl_{Y} \mid uon-3evo$ loss = logistic lo

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}$$

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}
ight]$$

$$h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}
ight]$$

when truck

17

Slide by Andrew Ng

Multi-layer Neural Network - Regression

Os are juitished combanly

$$a^{(1)} = x$$

$$a^{(2)} = \sigma(\Theta^{(1)}a^{(1)})$$

$$a^{(1)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$a^{(2)} = \sigma(\Theta^{(l)}a^{(l)})$$

$$\widehat{y} = \Theta^{(L)} a^{(L)}$$

$$L(y, \widehat{y}) = (y - \widehat{y})^2$$
$$\sigma(z) = \max\{0, z\}$$

Regression

Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of F, $|F(x) - \hat{F}(x)| < \epsilon$.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)