Kernels

UNIVERSITY of WASHINGTON

What if the data is not linearly separable?

. l : some points don’t satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:

1. Introduce slack to this optimization problem
2. Lift to higher dimensional space

What if the data is not linearly separable?

Use features of features of features...

Creating Features

Transformed data:

h : R? — RP maps original
features to a rich, possibly
high-dimensional space

for d>1, generate

{uj}io, C R?

. hyj(z) = (uj x)

Zlgxg x2 1
in d=1: h(x) = 2:36 = :E hy(@) = 1+ exp(u] x)
hp.(x) _x.P_ hj(z) = cos(u?x)

©2018 Kevin Jamieson

Creating Features

Transformed data:

h : R? — RP maps original
features to a rich, possibly
high-dimensional space

in d=1: h(z) =

for d>1, generate

{uj}io, C R?

hy(x) = (uj z)*

B 1

~ 1+exp(ulz)

hj(x) = Cos(ufac)

hj(z)

Feature space can get really large really quickly!

©2018 Kevin Jamieson

Degree-d Polynomials

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(x) - ¢(z') for all x,x'.

So, if we can represent our algorithms/decision rules as dot products
and we can find a kernel for our feature map
then we can avoid explicitly dealing with ¢(x).

Linear Regression as Kernels

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

] (6(u), (0)) = w1 + uz0s

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

d=15000) = |11 {6(0),6(0) = ur + uar
-
2
d=2:0(u) = | 2 | ($u), () = ufv] +ud} + 2uruzvivs

Feature space can get really large really quickly!

General d: Dimension of ¢(u) is roughly p? if u € R?

Feature expansion can be written implicitly K (u,v) = (u - V)p

Examples of Kernels

- Polynomials of degree exactly d
K(u,v) = (u-v)P

- Polynomials of degree up to d
K(u,v) = (u-v+ 1)’

- Gaussian (squared exponential) kernel
lu — v
202

K(u,v) = exp (—
- Sigmoid

K (u,v) = tanh(y - utv +)

The Kernel Trick

Pick a kernel K
For a linear predictor, show w=)>_. a;z;

Change loss function/decision rule to only access data
through dot products

Substitute K (z;, ;) for z! x;

Loss Functions

{(xi,y)tie1 x;,eRY 4, €R

n
= Loss functions: Zﬁi(w)
1=1
Squared error Loss: £;(w) = (y; — zl w)?

Logistic Loss: ¢;(w) = log(1 + exp(—y;] w))
0/1 loss: £;(w) = T[sign(y;) # sign(z! w)]

Hinge Loss: £;(w) = max{0,1 — y;z} w}

The Kernel Trick for regularized least squares

@:argmmz —xlw)? + M|wl||?

There exists an a € R™: w = g T
i=1

The Kernel Trick for regularized least squares

@:argmmz — 2 w)? 4+ NJwl|?

There exists an a € R™: w = E T
i=1

a = arg moin z:(yZ — Z aj{m, z:))? +)\Z Z ;o (T, x5)
i=1 j=1

Z—lj 1

mn n
:argmoinZ(yi —ZajK(:c,,;,xj +)\ZZ%0¢J (24, x5)
i=1 j=1

=1 5=1

= argmin ||y — Kal[3 + Ao’ Ka

K(:Ei, LEj) = <§b($z)a ¢($])>

