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Two different approaches to regression/classification 

• Assume something about P(x,y) 
• Find f which maximizes likelihood of training data  

assumption 
• Often reformulated as minimizing loss 

Versus 

• Pick a loss function 
• Pick a set of hypotheses H 
• Pick f from H which minimizes loss on training data
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• Learn: f:X —>Y 
• X – features 
• Y – target classes

• Expected loss of f:  
 
 
 

• Bayes optimal classifier: 

• Model of logistic regression: 

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

■ Loss function: 

P (Y = y|x,w) = 1

1 + exp(�y wTx)

What if the model is wrong? What other ways can we pick linear decision rules?

Y 2 {�1, 1}

Our description of logistic regression was the former



Linear classifiers – Which line is better?

robustness to perturbation
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Pick the one with the largest margin!

margin 2γ
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Pick the one with the largest margin!
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Pick the one with the largest margin!
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If ex0 is the projection of x0
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Pick the one with the largest margin!

margin 2γ
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Pick the one with the largest margin!

margin 2γ
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Pick the one with the largest margin!

margin 2γ
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Pick the one with the largest margin!

margin 2γ
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Pick the one with the largest margin!

margin 2γ

x
T
w
+
b
=

0
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min
w,b

||w||22

subject to yi(x
T
i w + b) � 1 8i

■ Solve efficiently by many methods, 
e.g., 
□ quadratic programming (QP) 

■ Well-studied solution algorithms 
□ Stochastic gradient descent 
□ Coordinate descent (in the dual) 



What are support vectors

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

If data is linearly separable

Note: the solution of this can be written in terms of very few of the training points. 
These points are known as support vectors.
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What if the data is not linearly separable?

If data is not linearly separable, 
some points don’t satisfy margin 
constraint:

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

If data is linearly separable

Two options:  
1. Introduce slack to this optimization problem 
2. Lift to higher dimensional space C Kernel



What if the data is not linearly separable?

If data is not linearly separable,  
some points don’t satisfy margin constraint:

min
w,b

||w||22
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T
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SVM as penalization method

• Original quadratic program with linear constraints:
min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫
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SVM as penalization method

• Original quadratic program with linear constraints: 

• Using same constrained convex optimization trick as for lasso:
For any ⌫ � 0 there exists a � � 0 such that the solution
the following solution is equivalent:

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22
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SVMs: optimizing what?

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rb`i(w, b) =

(
�yi if yi(b+ xT

i w) < 1

0 otherwise

rw`i(w, b) =

(
�xiyi +

2�
n w if yi(b+ xT

i w) < 1
2�
n otherwise
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