SVMs

Two different approaches to regression/classification

Genevative

- 6(2/X) Assume something about P(x,y)
- Find f which maximizes likelihood of training data assumption
 - Often reformulated as minimizing loss

Versus

Dis [viminative

- Pick a loss function
- Pick a set of hypotheses H
- Pick f from H which minimizes loss on training data

lihear & NV --

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

• Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y|X = x)$$

Model of logistic regression:

$$P(Y = y | x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

Loss function:

 $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

What if the model is wrong? What other ways can we pick linear decision rules?

Linear classifiers – Which line is better?

(hange of voisible; Pick the one with the largest margin! It was in the largest margin! [0]=) [[w] 2= | [w] 1) · + = = [|w] Distance of x_0 from hyperplane $x^T w + b$: $\frac{1}{||w||_2}(x_0^T w + b)$ Optimal Hyperplane NJU-CON UEX $\max \gamma$ subject to $\frac{1}{\mathbf{v}||w||_2} y_i(x_i^T w + b) \ge \mathbf{\gamma} \mid \forall i$ Optimal Hyperplane (reparameterized) Subject 1: (XT W + b) >1 U i

What are support vectors

Note: the solution of this can be written in terms of very few of the training points. These points are known as support vectors.

What if the data is not linearly separable?

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space ([CPVNe)

What if the data is not linearly separable?

margin

If data is linearly separable:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$
 slack variable $y_i(x_i^Tw+b) \geq 1-\xi_i \quad \forall i$ $\xi_i \geq 0, \sum_{i=1}^n \xi_j \leq \nu$ (sure)

SVM as penalization method

Original quadratic program with linear constraints:

SVM as penalization method

Original quadratic program with linear constraints:

$$\begin{aligned} \min_{w,b} ||w||_2^2 \\ y_i(x_i^T w + b) &\geq 1 - \xi_i \quad \forall i \\ \xi_i &\geq 0, \sum_{j=1}^n \xi_j \leq \nu \end{aligned}$$

$$\xi \in \mathcal{LT} \quad \text{(andition)}$$

• Using same constrained convex optimization trick as for lasso: For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$\min\left\{\begin{array}{c} \sum_{i=1}^n \max\{0,1-y_i(b+x_i^Tw)\} + \lambda||w||_2^2 \\ \underbrace{\sum_{i=1}^n \max\{0,1-y_i(b+x_i^Tw)\}}_{} + \underbrace{\lambda||w||_2^2} \end{array}\right.$$

SVM objective: data st: $\{(x_i, y_i)\}_{i=1}^u$ $y_i \in \{(y_i-1)\}$ **SVMs: optimizing what?**

$$\frac{1}{\ln \sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2} = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ \frac{2\lambda}{n} & \text{otherwise} \end{cases}$$

$$\nabla_b \ell_i(w, b) = \begin{cases} -y_i & \text{if } y_i(b + x_i^T w) < 1\\ 0 & \text{otherwise} \end{cases}$$