SVMs

Two different approaches to regression/classification

- Assume something about P(x,y)
- Find f which maximizes likelihood of training data assumption
 - Often reformulated as minimizing loss

Versus

- Pick a loss function
- Pick a set of hypotheses H
- Pick f from H which minimizes loss on training data

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Model of logistic regression:

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

Loss function:

 $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

What if the model is wrong? What other ways can we pick linear decision rules?

Linear classifiers – Which line is better?

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

What are support vectors

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Note: the solution of this can be written in terms of very few of the training points. These points are known as support vectors.

What if the data is not linearly separable?

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space

What if the data is not linearly separable?

$$x^T w + b = 0$$

$$\xi_{2}^{*} \qquad \xi_{5}^{*}$$

$$\frac{1}{||w||_{2}}$$

$$margin$$

$$\frac{1}{||w||_{2}}$$

If data is linearly separable:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

• Using same constrained convex optimization trick as for lasso: For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

SVMs: optimizing what?

SVM objective:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ \frac{2\lambda}{n} & \text{otherwise} \end{cases}$$

$$\nabla_{b}\ell_{i}(w,b) = \begin{cases} -y_{i} & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$