
Stochastic Gradient Descent

 



Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

 
1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

1
n

n

∑
i=1

ℓi(w)



Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R

■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

 
1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

1
n

n

∑
i=1

ℓi(w)



Stochastic Gradient Descent
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(In practice use last iterate)
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Stochastic Gradient Descent
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Stochastic Gradient Descent

Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z])  E[�(Z)]
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Mini-batch SGD

Instead of one iterate, average B stochastic gradient together 

Advantages: 
⁃ Smaller variance

⁃ Parallelization


