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Two different approaches to regression/classification 

• Assume something about P(x,y) 
• Find f which maximizes likelihood of training data | 

assumption 
• Often reformulated as minimizing loss 

Versus 

• Pick a loss function 
• Pick a set of hypotheses H 
• Pick f from H which minimizes loss on training data
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• Learn: f:X —>Y 
• X – features 
• Y – target classes

• Expected loss of f:  
 
 
 

• Bayes optimal classifier: 

• Model of logistic regression: 

■ Loss function: 

Y 2 {�1, 1}

Our description of logistic regression was the former
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• Learn: f:X —>Y 
• X – features 
• Y – target classes

• Expected loss of f:  
 
 
 

• Bayes optimal classifier: 

• Model of logistic regression: 

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)
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X
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P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)
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X
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P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

■ Loss function: 

P (Y = y|x,w) = 1

1 + exp(�y wTx)

What if the model is wrong? What other ways can we pick linear decision rules?

Y 2 {�1, 1}

Our description of logistic regression was the former
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Linear classifiers – Which line is better?



Linear classifiers – Which line is better?
robustness to perturbation as
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Linear classifiers – Which line is better?
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