SVMs and Kernels

Two different approaches to regression/classification

- Assume something about P(x,y)
 Find furbials
- Find f which maximizes likelihood of training data | assumption {(xi, yi) | w maximize Ti ((xi, yi) / w)
 - Often reformulated as minimizing loss η μιν-Σ/ογ ρ (Χί,Χ. μ)

Versus Discriminative Approach

- Pick a loss function %: Lassification

 Pick a set of hypotheses H Jinear function

 Pick a set of hypotheses H Jinear function

 **TX+640=0000
- Pick f from H which minimizes loss on training data

min
$$\bot \stackrel{\vee}{\geq} I (f^{(ki)}, y_i)$$
 $f \in H$
 f

Our description of logistic regression was the former

- Learn: f:X —>Y
 - X features
 - Y target classes

Loss function:

• Expected loss of f: $Y \in \{-1,1\}$ $E_{XY} = \{-1$

- Model of logistic regression: $P(x, w) = \frac{1}{(+exp(-y)w^Tk)}$

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

• Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y|X = x)$$

• Model of logistic regression:

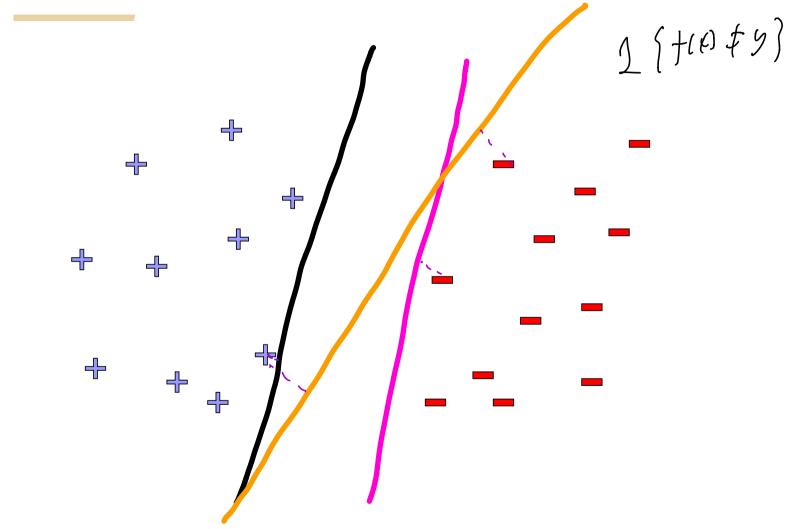
$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$
Orscandation

Loss function:

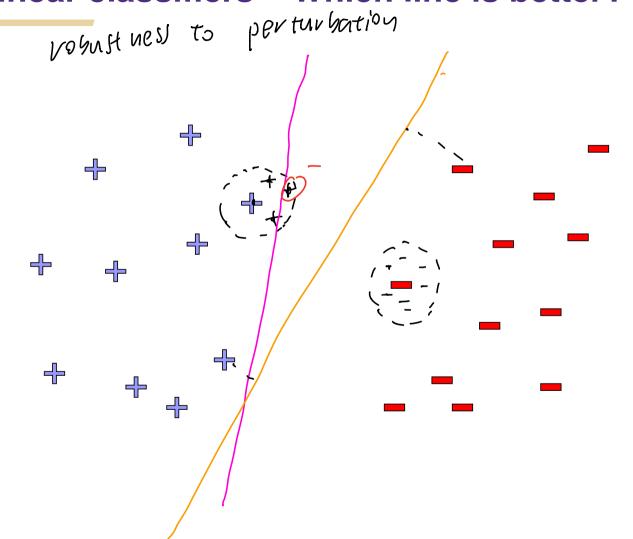
 $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

What if the model is wrong? What other ways can we pick linear decision rules?

Linear classifiers – Which line is better?



Linear classifiers – Which line is better?



Linear classifiers – Which line is better?

