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Two different approaches to regressionéclassification
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Our description of logistic regression was the former

e Learn: ;X —>Y = Loss function:

e X — features 1 (ff(f],y)-— A f 7%)1’57]

- Y —target classes
Expected loss of f:
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Our description of logistic regression was the former

* Learn: f:X —>Y = Loss function:
» X —features ((f(x),y) = 1{f(z) # y}
- Y —target classes
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Expected loss of f:

Exy[1{f(X) # Y}] = Ex[Ey|x[1{f(z) # Y }|X = z]|
Evix[H{f(z) #Y} X =2]=1 - P(Y = f(z)|X = x)

Bayes optimal classifier: | ¢;) = arg maxP(Y = y| X = 2)
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Model of logistic regression: | P = ylz,w) = TR —

henevart DIS(VimM oty

What if the model is wrong? What other ways can we pick linear decision rules?
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Linear classifiers — Which line is better?
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Linear classifiers — Which line is better?
VO%/\H nes 1o [JQVWVW-“OV)




Linear classifiers — Which line is better?
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