SVMs and Kernels

UNIVERSITY of WASHINGTON

Two different approaches to regression/classification

 Assume something about P(x,y)

* Find f which maximizes likelihood of training data |
assumption

e Often reformulated as minimizing loss
Versus
* Pick a loss function

e Pick a set of hypotheses H
e Pick f from H which minimizes loss on training data

Our description of logistic regression was the former

Learn: ;X —>Y = Loss function:
e X — features

- Y —target classes

Y e{-1,1}
Expected loss of f:

Bayes optimal classifier:

Model of logistic regression:

Our description of logistic regression was the former

e Learn: f:X —>Y = Loss function:
* X —features ((f(z),y) = 1{f(z) # vy}
- Y —target classes
Ye{-11}

- Expected loss of f:

Exy [1{f(X) # Y}] = Ex[Ey x[1{f(z) # Y}|X = a]]
Eyix[L{f() 2Y}X =2]=1 - P(Y = f(2)|X =)

- Bayes optimal classifier: | () = argmaxP(¥ = y|X = 2)
Y

1
1+ exp(—ywTx)

- Model of logistic regression: |PY =y|z,w) =

What if the model is wrong? What other ways can we pick linear decision rules?

Loss Functions

{(xi,y)tie1 x;,eRY 4, €R

n
= Loss functions: Zﬁi(w)
1=1
Squared error Loss: £;(w) = (y; — xl w)?
Logistic Loss: ¢;(w) = log(1 + exp(—y;] w))
0/1 loss: ¢;(w) = T[sign(y;) # sign(xz! w)]

Hinge Loss: /;(w) = max{0,1 — y;z} w}

Linear classifiers — Which line is better?

Pick the one with the largest margin!

-
Il

:
I %
.:B:. -
.:B:. -
T+
ob
éﬂ: -
S - -

Pick the one with the largest margin!

7 .
f Distance from zg to
.3 hyperplane defined
|:E|:| 8 T — 07
. 0 - by - w + b = 07
W & -
2 S -
AL
o'y s -

Pick the one with the largest margin!

7 .

f Distance from zg to
S hyperplane defined
F s by zTw + b = 07?

5 4 If z¢ is the projection of xq
= onto the hyperplane then

= w0 — Toll2 = |(z5 — To)" 1rarr; |

. + e

Pick the one with the largest margin!

7 Distance of xg from
¢ hyperplane ! w + b:
&

1
(29w +b)

.) Tl
== Optimal Hyperplane

Pick the one with the largest margin!

7 Distance of xg from
+ hyperplane ! w + b:
&S 1

ow+b
N _ fufl, 70)

== Optimal Hyperplane

.:I']:. - max -y
':II]:' |:|']:| w,b
subject to yi(ziw+b) >~ Vi
= [|lw]]2
. -
Eﬂ:' = =

Pick the one with the largest margin!

-
Il

I %
'ﬁ']:'
'ﬁ']:'
T+
'ﬁ']:'
+
5

Distance of xg from

hyperplane ! w + b:
1

[wl]2

(29w +b)

== Optimal Hyperplane

max -y
w,b

yi(x; w4 b) >y Vi

subject to

1
[lwl]2

Optimal Hyperplane (reparameterized)

Pick the one with the largest margin!

i
I %
'ﬁ']:'

'ﬁ']:'
T+
'ﬁ']:'

+
5

Distance of xg from

hyperplane ! w + b:
1

T
rhw + b
Twll 0w 0

== Optimal Hyperplane

max -y
w,b

1
subject to Tl yi(xiw+b) >~ Vi
wi|2

Optimal Hyperplane (reparameterized)

min ||wl|3
w,b

subject to y;(xi w+b) > 1 Vi

Pick the one with the largest margin!

S
Il
O
+
S = Solve efficiently by many methods,
ob S
e.g.,
T = quadratic programming (QP)
= = Well-studied solution algorithms
& Stochastic gradient descent

ob L Coordinate descent (in the dual)

Optimal Hyperplane (reparameterized)

min ||wl[3
w,b

subject to y;(z] w+b) > 1 Vi

What if the data is not linearly separable?

tTw+b=0 . If data is linearly separable
T e
: min ||w
o nin
ol - |
yi(z; w+b) >1 Wi
margin

If data is not linearly separable,
some points don’t satisfy margin
constraint:

Two options:
1. Introduce slack to this optimization problem
2. Lift to higher dimensional space

What if the data is not linearly separable?

If data is linearly separable:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

If data is not linearly separable,

1 some points don’t satisfy margin constraint:

min | |w|]3
w,b

yi(x;pw+b) >1-& Vi

gi > 07Z§7 <v
j=1

What if the data is not linearly separable?

If data is linearly separable:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

If data is not linearly separable,

1 some points don’t satisfy margin constraint:

min | |w|]3
w,b

yi(x;pw+b) >1-& Vi

gi > 07Z§7 <v
j=1

= What are “support vectors?”

SVM as penalization method

o Original quadratic program with linear constraints:

min ||wl|3
w,b

yi(xiw+b) >1—§& Vi

§ > O,Z§j <v
=1

SVM as penalization method

o Original quadratic program with linear constraints:

min ||wl|3
w,b

yi(xiw+b) >1—§& Vi

§ > O;Zﬁj <v
=1

e Using same constrained convex optimization trick as for lasso:
For any v > 0 there exists a A > 0 such that the solution

the following solution is equivalent:

Z max{0,1 — y;(b+ z] w)} + A||w]||3
i=1

SVMs: optimizing what?

SVM objective:

S max{0, 1 -y, (b + aTw)} + Aol =S €(w,b)
1=1

1=1

—iy; + 2 it y; i 1
Vw&(w,b)—{2/\xy+"w if y;(b+ 2; w) <

n

otherwise

Voli(w.b) = 4 Y if y;(b+zfw) <1
AT 0 otherwise

SVMs: optimizing what?

SVM objective:

S max{0, 1 -y, (b + aTw)} + Aol =S €(w,b)
1=1

1=1

Note: the minimizer of this can be written in terms of very few of the training points.
These points are known as support vectors.

What if the data is not linearly separable?

le, some points don’t satisfy margin

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem
2. Lift to higher dimensional space

What if the data is not linearly separable?

Use features of features of features...

T o(z) : RY — RP

Feature space can get really large really quickly!

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

(V5]
U

d=15000) = |11 {6(0),6(0) = ur + uar

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

] (6(u), (0)) = w1 + uz0s

d=2:¢(u) = (p(u), p(v)) = uivT + usvs + 2uiUsv1 Vs

Dot-product of polynomials

d(u) - P(v) = polynomials of degree exactly d

d=15000) = |11 {6(0),6(0) = ur + uar
-
2
d=2:0(u) = | 2 | ($u), () = ufv] +ud} + 2uruzvivs

Feature space can get really large really quickly!
General d :

Dimension of ¢(u) is roughly p? if u € RP

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(x) - ¢(z') for all x,x'.

So, if we can represent our algorithms/decision rules as dot products
and we can find a kernel for our feature map
then we can avoid explicitly dealing with ¢(x).

Examples of Kernels

- Polynomials of degree exactly d
K(u,v) = (u-v)P

- Polynomials of degree up to d
K(u,v) = (u-v+ 1)’

- Gaussian (squared exponential) kernel
lu — v
202

K(u,v) = exp (—
- Sigmoid

K (u,v) = tanh(y - utv +)

The Kernel Trick

Pick a kernel K
Prove w = Zz ;T

Change loss function/decision rule to only access data
through dot products
Decision rule is easy: why?

Substitute K (z;, ;) for z! x;

The Kernel Trick for SVMs

Pick a kernel K

Prove w = Zz ;T

Change loss function/decision rule to only access data
through dot products

Substitute K (z;, ;) for z! x;

The Kernel Trick for regularized least squares

@:argmmz —xlw)? + M|wl||?

There exists an o € R": w = Z T Why?
i=1

The Kernel Trick for regularized least squares

@:argmmz —xlw)? + M|wl||?

There exists an a € R™: w = g T
i=1

a = arg moin Z(yz — Z aj{m, z:))? +)\Z Z ;o (T, x5)
i=1 j=1

i=1 j=1

The Kernel Trick for regularized least squares

@:argmmz — 2 w)? 4+ NJwl|?

There exists an a € R™: w = E T
i=1

a = arg moin z:(yZ — Z aj{m, z:))? +)\Z Z ;o (T, x5)
i=1 j=1

Z—lj 1

mn n
:argmoinZ(yi —ZajK(:c,,;,xj +)\ZZ%0¢J (24, x5)
i=1 j=1

=1 5=1

= argmin ||y — Kal[3 + Ao’ Ka

K(:Ei, LEj) = <§b($z)a ¢($])>

Why regularization?

Typically, K >~ 0. What if A =07

a = argmin ||y — Ko||3 + A" Ko
(87

Why regularization?

Typically, K >~ 0. What if A =07

a = argmin ||y — Ko||3 + A" Ko
(87

Unregularized kernel least squares can (over) fit any data!

a=K'y

RBF Kernel &uv) - e (-1

202

Note that this is like weighting “bumps” on each point
like kernel smoothing but now we learn the weights

Radial Basis Functions f(z) =0+ Zj o; K (z,z;)

-0.4
1

K(z,z;)
00 05 10 15
f(z)

00 02 04
1 1 | |

RBF Kernel

K (u,v) = e (-

The bandwidth sigma has an enormous effect on fit:
c=10"* A=10"*

c=10"2 A=10""1

—— True f(x)

Fitted f(x)

.
q A Dat
v * A
\
A
A 1
]
J
!
"
l
\
y \
{
.
\
J
\
I J
04 06 08 10
x1

Ju —vi|

2
2

202

)

c=10"°A=10"*%

60 .
\| \
55
50
.
4
45

—— True f(x)

Fitted f(x)
Data

Il
N

—— True f(x)

Fitted f(x)
- Data

.
/\.
.
\
/
\
,
.
4 06 08 10
x1

[u — v]|3

RBF Kernel K(u,v) =exp | —— —

The bandwidth sigma has an enormous effect on fit:
c=10"2 A=10"1 c=10"" A=10"1 c=10°X=10"*

65 65
—— True f(x) —— True f(x) —— True f(x)
Fitted f(x) Fitted f(x) . Fitted f(x)

- Data I: o0 o - Data]I 80 s + Data
A ﬁ A N &

.. \ \ I [;so : -. . ’ . ' ;50 : '. . : * ‘
’. \ / 45 [\

c=10"3) x=10"" c=10"1 A=10""
‘. — Truefix) - : —— True f(x)

Fitted f{x) Fitted fx)
- Data) . Data

x1
©2018 Kevin Jamieson

_ 2
RBF Kern9| K(u, V) = exp <_ Hu20-2VH2>

. . I a2, .
Basis representation in 1d? [p(z)]; = ﬁe ' fori=0,1,...

> Note that this is like weighting “bumps” on each
point like kernel smoothing but now we learn the

weights
§(a)T o) = i (L) (e)

224 (212 1 .
— e T Y S ()’

If n is very large, allocating an n-by-n matrix is tough. Can we truncate the
above sum to approximate the kernel?

©2018 Kevin Jamieson

RBF kernel and random features

2 cos(a) cos(8) = cos(a + B) + cos(a — B)
el% = cos(z) + j sin(z)

Recall HW1 where we used the feature map:

» VZeostwiz bl A0, 27 1)
ﬂcos(u;ijpr) b ~ uniform(0, 7)
Bl 0(@)"6(u)] = > Bf2cos(ul o+ bu) cos(uly + b
k=1
= K, 3[2 cos(w’ z + b) cos(w’ y + b)]

— 6—7||$—y||2

[Rahimi, Recht NIPS 2007]
“NIPS Test of Time Award, 2018

RBF kernel and random features

2 cos(a) cos(8) = cos(a + B) + cos(a — B)
el% = cos(z) + j sin(z)

Recall HW1 where we used the feature map:

» VZeostwiz bl A0, 27 1)
ﬂcos(u;ijpr) b ~ uniform(0, 7)
Bl 0(@)"6(u)] = > Bf2cos(ul o+ bu) cos(uly + b
k=1
= K, 3[2 cos(w’ z + b) cos(w’ y + b)]

— 6—7||$—y||2

[Rahimi, Recht NIPS 2007]
“NIPS Test of Time Award, 2018

RBF Classification

i = ZmaX{O, 1 — yi(b+5€Tw)} +)\||w||%
1=1

mmZmaX{O 1 —wy; b—|—Zozj Ti, i)} + A Z Qo (X, 2 5)

1,7=1

