SVMs and Kernels

Two different approaches to regression/classification

- Assume something about P(x,y)
- Find f which maximizes likelihood of training data | assumption
 - Often reformulated as minimizing loss

Versus

- Pick a loss function
- Pick a set of hypotheses H
- Pick f from H which minimizes loss on training data

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

Expected loss of f:

- Bayes optimal classifier:
- Model of logistic regression:

Loss function:

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Model of logistic regression:

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

Loss function:

 $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

What if the model is wrong? What other ways can we pick linear decision rules?

Loss Functions

$$\{(x_i, y_i)\}_{i=1}^n$$

$$x_i \in \mathbb{R}^d$$

$$y_i \in \mathbb{R}$$

Loss functions:

$$\sum_{i=1}^{n} \ell_i(w)$$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

 $0/1 \text{ loss: } \ell_i(w) = \mathbb{I}[\operatorname{sign}(y_i) \neq \operatorname{sign}(x_i^T w)]$

Hinge Loss: $\ell_i(w) = \max\{0, 1 - y_i x_i^T w\}$

Linear classifiers – Which line is better?

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

If data is linearly separable

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space

$$x^T w + b = 0$$

$$\xi_{2}^{*} \qquad \xi_{5}^{*}$$

$$\frac{1}{||w||_{2}}$$

$$margin$$

$$\frac{1}{||w||_{2}}$$

If data is linearly separable:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

$$x^T w + b = 0$$

$$\xi_4^* \qquad \xi_5^*$$

$$\frac{1}{||w||_2}$$

$$\frac{1}{||w||_2}$$

If data is linearly separable:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

What are "support vectors?"

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

• Using same constrained convex optimization trick as for lasso: For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

SVMs: optimizing what?

SVM objective:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ \frac{2\lambda}{n} & \text{otherwise} \end{cases}$$

$$\nabla_{b}\ell_{i}(w,b) = \begin{cases} -y_{i} & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$

SVMs: optimizing what?

SVM objective:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

Note: the minimizer of this can be written in terms of very few of the training points. These points are known as support vectors.

le, some points don't satisfy margin

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space

Use features of features of features...

Feature space can get really large really quickly!

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{vmatrix} u_1 \\ u_2 \end{vmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Feature space can get really large really quickly!

General d:

Dimension of $\phi(u)$ is roughly p^d if $u \in \mathbb{R}^p$

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

So, if we can represent our algorithms/decision rules as dot products and we can find a kernel for our feature map then we can avoid explicitly dealing with $\phi(x)$.

Examples of Kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^p$$

Gaussian (squared exponential) kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(u, v) = \tanh(\gamma \cdot u^T v + r)$$

The Kernel Trick

Pick a kernel K

Prove
$$w = \sum_{i} \alpha_i x_i$$

Change loss function/decision rule to only access data through dot products

Decision rule is easy: why?

Substitute $K(x_i, x_j)$ for $x_i^T x_j$

The Kernel Trick for SVMs

Pick a kernel K

Prove
$$w = \sum_i \alpha_i x_i$$

Change loss function/decision rule to only access data

through dot products

Substitute
$$K(x_i, x_j)$$
 for $x_i^T x_j$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$ Why?

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

$$= \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?
$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?

$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Unregularized kernel least squares can (over) fit any data!

$$\widehat{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$

RBF Kernel
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

The bandwidth sigma has an enormous effect on fit:

$$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$

RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

The bandwidth sigma has an enormous effect on fit:

RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

Basis representation in 1d?

$$[\phi(x)]_i = \frac{1}{\sqrt{i!}} e^{-\frac{x^2}{2}} x^i$$
 for $i = 0, 1, \dots$

Note that this is like weighting "bumps" on each point like kernel smoothing but now we learn the weights

$$\phi(x)^{T}\phi(x') = \sum_{i=0}^{\infty} \left(\frac{1}{\sqrt{i!}} e^{-\frac{x^{2}}{2}} x^{i}\right) \left(\frac{1}{\sqrt{i!}} e^{-\frac{(x')^{2}}{2}} (x')^{i}\right)$$
$$= e^{-\frac{x^{2} + (x')^{2}}{2}} \sum_{i=1}^{\infty} \frac{1}{i!} (xx')^{i}$$

If n is very large, allocating an n-by-n matrix is tough. Can we truncate the above sum to approximate the kernel?

RBF kernel and random features

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
$$e^{jz} = \cos(z) + j\sin(z)$$

Recall HW1 where we used the feature map:

$$\phi(x) = \begin{bmatrix} \sqrt{2}\cos(w_1^T x + b_1) \\ \vdots \\ \sqrt{2}\cos(w_p^T x + b_p) \end{bmatrix} \qquad \begin{aligned} w_k &\sim \mathcal{N}(0, 2\gamma I) \\ b_k &\sim \text{uniform}(0, \pi) \end{aligned}$$

$$\mathbb{E}\left[\frac{1}{p}\phi(x)^{T}\phi(y)\right] = \frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left[2\cos(w_{k}^{T}x + b_{k})\cos(w_{k}^{T}y + b_{k})\right]$$
$$= \mathbb{E}_{w,b}\left[2\cos(w^{T}x + b)\cos(w^{T}y + b)\right]$$
$$= e^{-\gamma||x - y||_{2}^{2}}$$

[Rahimi, Recht NIPS 2007] "NIPS Test of Time Award, 2018"

RBF kernel and random features

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
$$e^{jz} = \cos(z) + j\sin(z)$$

Recall HW1 where we used the feature map:

$$\phi(x) = \begin{bmatrix} \sqrt{2}\cos(w_1^T x + b_1) \\ \vdots \\ \sqrt{2}\cos(w_n^T x + b_n) \end{bmatrix} \qquad \begin{aligned} w_k &\sim \mathcal{N}(0, 2\gamma I) \\ b_k &\sim \text{uniform}(0, \pi) \end{aligned}$$

$$\mathbb{E}\left[\frac{1}{p}\phi(x)^{T}\phi(y)\right] = \frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left[2\cos(w_{k}^{T}x + b_{k})\cos(w_{k}^{T}y + b_{k})\right]$$
$$= \mathbb{E}_{w,b}\left[2\cos(w^{T}x + b)\cos(w^{T}y + b)\right]$$
$$= e^{-\gamma||x - y||_{2}^{2}}$$

[Rahimi, Recht NIPS 2007] "NIPS Test of Time Award, 2018"

RBF Classification

$$\widehat{w} = \sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

$$\min_{\alpha, b} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + \sum_{j=1}^{n} \alpha_j \langle x_i, x_j \rangle)\} + \lambda \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

