Coordinate Descent




Optimization: how do we solve Lasso?

e among many methods to find the solution, we will learn
coordinate descent method

* as an illustrating example, we show coordinate descent updates
on finding the minimum of f(x, y) = 5x% — 6xy + 5y?

15 , f'(x,y) :5x2‘ —6wy+5y2
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How do we solve Lasso: min Z(w) + A||w||?

w
e Coordinate descent

e input: training data S,,;,, max # of iterations T

rain?
e initialize: W) = 0 € R4
e for r=1,....,T

e for j=1,...,d

. fix w(t) ...,w() and w D . w D and
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this is a one-dimensional optimization, which is much easier to solve



Coordinate descent for (un-regularized) linear regression

* let us understand what coordinate descent does on a simpler
problem of linear least squares, which minimizes

minimize,, Z(w) = || Xw — y||2

note that we know that the optimal solution is
A T~ -1y T
wrs = XTX)7 Xy

so we do not need to run any optimization algorithm

* we are solving this problem with coordinate descent as
a starting example

« the main challenge we address is, how do we update V\/}(t)?

o let us derive an analytical rule for updating wj(t)



Coordinate descent for (un-regularized) linear regression



Coordinate descent for (un-regularized) linear regression

« we will study the case j = 1, for now (other cases are almost identical)

« when updating wl(’), recall that

(t) — arg min || Xw —y||3

where w = [wl, Wz(t D s e ,Wg_l)]T

e first step is to write the objective function in terms of the variable we are
optimizing over, that is wy:

Lw) = || X[, 1wy + X[ 22 dlwyy = yH

where w,. [w(t b, (t D

e we know from linear least squares that the minimizer is

w® — X[ AXE DT XL (y — X2 0 dlwyy)




* Coordinate descent applied to a quadratic loss
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Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize, ZW) + A||w||; = |Xw —y|I5 + A ||wll

o the goal is to derive an analytical rule for updating wj(t)’s

o let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w;

2
HX[: Jlw, — (y - X[:.2: d]W2:d>H2 +’1( | wi | + [lwylly )

constant

* hence, the coordinate descent update boils down to

2
wl(t) < arg min HX[: Jdw, — (y - X[:,2: cz’]v1/_2:d)H2 + 4w |
Wi

Jowy)



Convexity

e this function is
e convex, and

e non-differentiable

to find the minimizer of f(w,), let’s study some properties
o for simplicity, we represent the objective function as

fw) = (aw, — b)* + A|w, |

* depending on the values of a and b, the function looks like

one of the three below
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Convexity f(x) = | x|

* for a non-differentiable function, gradient is not defined at some points,
for example at x = O for f(x) = | x|
* at such points, sub-gradient plays the role of gradient
* sub-gradient at a differentiable point is the same as the gradient
* sub-gradient at a non-differentiable point is a set of vector satisfying

of(x) = {g €RI|f(y) = fx)+g"(y—x), forally € R}
+1 forxz >0

{ [—1,1] forx=0
—1 forxz <O

e forexample, d|x| =



Computing the sub-gradient

w = argmin [X[: 1wy — (y - XI ,2:d]w_1)”j+/1|w1|

Jfwy)



Computing the sub-gradient

w = argmin [X[: 1wy — (y - XI ,2:d]w_1)”2+/1|w1|

Sflwy)
o thisisf(w;) = (aw; — b)Y + A wy | + constants, with

o 4= \/X[: 117X[: ,1], and
) X[ 117 (y = X[:,2 - dlw_y)

’ VXL TX: L]

 f(w,) is non-differentiable, and its sub-gradient is
of(wy) = alaw, — b) + Ad|w|

( 2a(aw; —b) + A for wy; >0
—< [—2ab— A\, —2ab+ )] for w; =0
2a(aw1 — b) — A\ for w1 < 0
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Convexity

o for convex differentiable functions, the minimum is achieved at points
where gradient is zero

80 1

-8 -6 -4 > 4 6 8

e for convex non-differentiable functions, the minimum is achieved at
points where sub-gradient includes zero

10+




Computing the sub-gradient

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+ )] for w; =0
2a(aw; —b) — X for wy; <0



Computing the sub-gradient

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+ )] for w; =0
2a(aw; —b) — X for wy; <0



Computing the sub-gradient

e the minimizer wl(’) IS when zero is included in the sub-gradient

2a(aw; —b) + A for wy; >0
Of (w1) = | —2ab— A\, —2ab+ )] for w; =0
2a(aw; —b) — X for wy; <0



Computing the sub-gradient

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—# for 2ab > \
w 0 for — A< 2ab< )\
%—I—ﬁ for A < —2ab
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How do we find the minimizer?

o the minimizer w'” is when zero is included in the sub-gradient

|

2a(awy — b) + A
Of (w1) = | — 2ab — A\, —2ab + )]
2a(awy — b) — A
e case 1:
e 2a(aw; — b) + A =0 for some w; > 0
* this happens when

— A+ 2ab
Wl — > O
2a?
* hence, . p
(1)
w e — — —
1 a 2a?

for wy >0
for w; =0
for wy <0
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if A < 2ab
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e case 2:

200 1

e 2a(aw; — b) — A = 0 for some w; < 0
 this happens when

150

A+ 2ab
wp = <0 \J
2a?
* hence, w75 5 A
o b 4 |
Wl A ; + 2a2’ minimum
if A < —2ab

e case 3:
e 0 € [—2ab— A, —2ab+ 1]
OandW1=O

* hence,
w0,

if —4 < 2ab < 4

minimum
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Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > A\
w 0 for — A< 2ab< )\
+ 525 for A < —2ab

Q|

X[ 10 (y = X[:,2 - dlw_y)
VXL TX: LT

where a = \/X[: A17X[:,1],and b =

100
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When does coordinate descent work?

e Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

-

e when coordinate descent has stopped, that means

o) =O0forallj € {1,...,d}

a.x]'

e this implies that the gradient V, f(x) = 0, which happens only
at minimum




When does coordinate descent work?

* Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck

7
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When does coordinate descent work?

e then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-d(;fferentiable convex function but has a

structure of f(x) = g(x) + Z hj(xj) , with differentiable convex

j=1
function g(x) and coordinate-wise non-differentiable convex functions
hj(xj)’s, then coordinate descent converges to the global minima
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