# **Coordinate Descent**



## **Optimization: how do we solve Lasso?**

- among many methods to find the solution, we will learn coordinate descent method
- as an illustrating example, we show coordinate descent updates on finding the minimum of  $f(x, y) = 5x^2 6xy + 5y^2$



# How do we solve Lasso: min $\mathcal{L}(w) + \lambda ||w||_1$ ?

W

- Coordinate descent
  - input: training data  $S_{
    m train}$ , max # of iterations T
  - initialize:  $w^{(0)} = \mathbf{0} \in \mathbb{R}^d$
  - for t = 1, ..., T
    - for j = 1,...,d
      - fix  $w_1^{(t)}, ..., w_{j-1}^{(t)}$  and  $w_{j+1}^{(t-1)}, ..., w_d^{(t-1)}$ , and



this is a one-dimensional optimization, which is much easier to solve

### Coordinate descent for (un-regularized) linear regression

• let us understand what coordinate descent does on a simpler problem of linear least squares, which minimizes  $\min \mathbf{z} = \mathbf{x} \mathbf{y} = \|\mathbf{x}\mathbf{w} - \mathbf{y}\|_{2}^{2}$ 

- note that we know that the optimal solution is  $\hat{w}_{\mathrm{LS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$  so we do not need to run any optimization algorithm
- we are solving this problem with coordinate descent as a starting example
- the main challenge we address is, how do we update  $w_j^{(t)}$ ?
- let us derive an **analytical rule** for updating  $w_j^{(t)}$

Coordinate descent for (un-regularized) linear regression

#### Coordinate descent for (un-regularized) linear regression

- we will study the case j = 1, for now (other cases are almost identical)
- when updating  $w_1^{(t)}$ , recall that  $w_1^{(t)} \leftarrow \arg\min_{w_1} \|\mathbf{X}w \mathbf{y}\|_2^2$  where  $w = [w_1, \ w_2^{(t-1)}, \ \dots, w_d^{(t-1)}]^T$
- first step is to write the objective function in terms of the variable we are optimizing over, that is  $w_1$ :

$$\mathcal{L}(w) = \| \mathbf{X}[:,1]w_1 + \mathbf{X}[:,2:d]w_{2:d} - \mathbf{y} \|_2^2$$
where  $w_{2:d} = [w_2^{(t-1)}, \dots, w_d^{(t-1)}]^T$ 

$$\mathbf{X}[:,1] \quad \mathbf{X}[:,2:d] \quad \mathbf{w}_{2:d} \quad \mathbf{x}[:,1] \quad \mathbf{X}[:,2:d]$$

$$\mathbf{X}[:,1] \quad \mathbf{X}[:,2:d] \quad \mathbf{X}[:,2:d]$$

we know from linear least squares that the minimizer is

$$w_1^{(t)} \leftarrow (\mathbf{X}[:,1]^T \mathbf{X}[:,1])^{-1} \mathbf{X}[:,1]^T (\mathbf{y} - \mathbf{X}[:,2:d] w_{2:d})$$

#### Coordinate descent applied to a quadratic loss



### Coordinate descent for Lasso

- let us apply coordinate descent on Lasso, which minimizes  $\min_{w} \mathcal{L}(w) + \lambda \|w\|_1 = \|\mathbf{X}w \mathbf{y}\|_2^2 + \lambda \|w\|_1$
- the goal is to derive an **analytical rule** for updating  $w_j^{(t)}$ 's
- let us first write the update rule explicitly for  $w_1^{(t)}$ 
  - first step is to write the loss in terms of  $w_1$

$$\|\mathbf{X}[:,1]w_1 - (\mathbf{y} - \mathbf{X}[:,2:d]w_{2:d})\|_2^2 + \lambda(\|w_1\| + \|w_{2:d}\|_1)$$

hence, the coordinate descent update boils down to

$$w_1^{(t)} \leftarrow \arg\min_{w_1} \left\| \mathbf{X}[:,1]w_1 - \left(\mathbf{y} - \mathbf{X}[:,2:d]w_{-2:d}\right) \right\|_2^2 + \lambda |w_1|$$

$$f(w_1)$$

# Convexity

- to find the minimizer of  $f(w_1)$ , let's study some properties
- for simplicity, we represent the objective function as  $f(w_1) = (aw_1 b)^2 + \lambda |w_1|$
- this function is
  - convex, and
  - non-differentiable
- depending on the values of a and b, the function looks like one of the three below



$$f(x) = |x|$$

- for a **non-differentiable** function, gradient is not defined at some points, for example at x=0 for f(x)=|x|
- at such points, sub-gradient plays the role of gradient
  - sub-gradient at a differentiable point is the same as the gradient
  - sub-gradient at a non-differentiable point is a set of vector satisfying

$$\partial f(x) = \left\{ g \in \mathbb{R}^d \mid f(y) \ge f(x) + g^T(y - x), \text{ for all } y \in \mathbb{R}^d \right\}$$

• for example, 
$$\partial |x| = \begin{cases} +1 & \text{for } x > 0 \\ [-1,1] & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{cases}$$

$$w_1^{(t)} = \arg\min_{w_1} \left\| \mathbf{X}[:,1]w_1 - \left(\mathbf{y} - \mathbf{X}[:,2:d]w_{-1}\right) \right\|_2^2 + \lambda |w_1|$$

$$f(w_1)$$

$$w_1^{(t)} = \arg\min_{w_1} \left\| \mathbf{X}[:,1]w_1 - \left(\mathbf{y} - \mathbf{X}[:,2:d]w_{-1}\right) \right\|_2^2 + \lambda |w_1|$$

• this is  $f(w_1) = (aw_1 - b)^2 + \lambda |w_1| + \text{constants}$ , with

• 
$$a = \sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}$$
, and 
$$b = \frac{\mathbf{X}[:,1]^T (\mathbf{y} - \mathbf{X}[:,2:d] w_{-1})}{\sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}}$$

•  $f(w_1)$  is non-differentiable, and its sub-gradient is

$$\partial f(w_1) = (2a(aw_1 - b) + \lambda \partial | w_1 |$$

$$= \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0 \\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0 \\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

# Convexity

 for convex differentiable functions, the minimum is achieved at points where gradient is zero



 for convex non-differentiable functions, the minimum is achieved at points where sub-gradient includes zero



• the minimizer  $w_1^{(t)}$  is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

• the minimizer  $w_1^{(t)}$  is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

• the minimizer  $w_1^{(t)}$  is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

 considering all three cases, we get the following update rule by setting the sub-gradient to zero

$$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \le 2ab \le \lambda \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$

### How do we find the minimizer?

• the minimizer  $w_{\rm 1}^{(t)}$  is when zero is included in the sub-gradient

$$\partial f(w_1) = \begin{cases} 2a(aw_1 - b) + \lambda & \text{for } w_1 > 0\\ [-2ab - \lambda, -2ab + \lambda] & \text{for } w_1 = 0\\ 2a(aw_1 - b) - \lambda & \text{for } w_1 < 0 \end{cases}$$

- case 1:
  - $2a(aw_1 b) + \lambda = 0$  for some  $w_1 > 0$
  - this happens when  $w_1 = \frac{-\lambda + 2ab}{2a^2} > 0$
  - hence,

hence, 
$$w_1^{(t)} \leftarrow \frac{b}{a} - \frac{\lambda}{2a^2}$$
,

if 
$$\lambda < 2ab$$



- case 2:
  - $2a(aw_1 b) \lambda = 0$  for some  $w_1 < 0$
  - this happens when

$$w_1 = \frac{\lambda + 2ab}{2a^2} < 0$$

hence,

$$w_1^{(t)} \leftarrow \frac{b}{a} + \frac{\lambda}{2a^2}$$

if 
$$\lambda < -2ab$$

- case 3:
  - $0 \in [-2ab \lambda, -2ab + \lambda]$
  - and  $w_1 = 0$
  - hence,  $w_1^{(t)} \leftarrow 0$ ,

if 
$$-\lambda \le 2ab \le \lambda$$





#### Coordinate descent on Lasso

minimum

20

 considering all three cases, we get the following update rule by setting the sub-gradient to zero

$$w_1^{(t)} \leftarrow \begin{cases} \frac{b}{a} - \frac{\lambda}{2a^2} & \text{for } 2ab > \lambda \\ 0 & \text{for } -\lambda \le 2ab \le \lambda \\ \frac{b}{a} + \frac{\lambda}{2a^2} & \text{for } \lambda < -2ab \end{cases}$$

where 
$$a = \sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}$$
, and  $b = \frac{\mathbf{X}[:,1]^T (\mathbf{y} - \mathbf{X}[:,2:d] w_{-1})}{\sqrt{\mathbf{X}[:,1]^T \mathbf{X}[:,1]}}$ 

### When does coordinate descent work?

• Consider minimizing a **differentiable convex** function f(x), then coordinate descent converges to the global minima





- when coordinate descent has stopped, that means  $\frac{\partial f(x)}{\partial x_i} = 0 \text{ for all } j \in \{1, \dots, d\}$
- this implies that the gradient  $\nabla_x f(x) = 0$ , which happens only at minimum

### When does coordinate descent work?

• Consider minimizing a **non-differentiable convex** function f(x), then coordinate descent can get stuck



### When does coordinate descent work?

- then how can coordinate descent find optimal solution for Lasso?
- consider minimizing a **non-differentiable convex** function but has a structure of  $f(x) = g(x) + \sum_{j=1}^d h_j(x_j)$ , with differentiable convex

function g(x) and coordinate-wise non-differentiable convex functions  $h_i(x_i)$ 's, then coordinate descent converges to the global minima

