Gradieux Descent & its variations & Convex Optimization

First-order methods

Set Junction

min fcw)

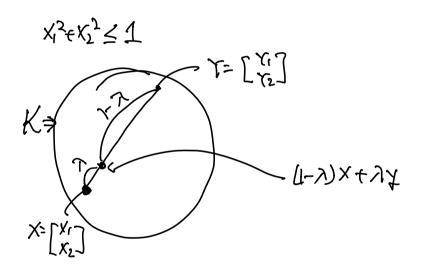
s.t. WEK

Convex openingation : ff: convex K: convex

Convexity

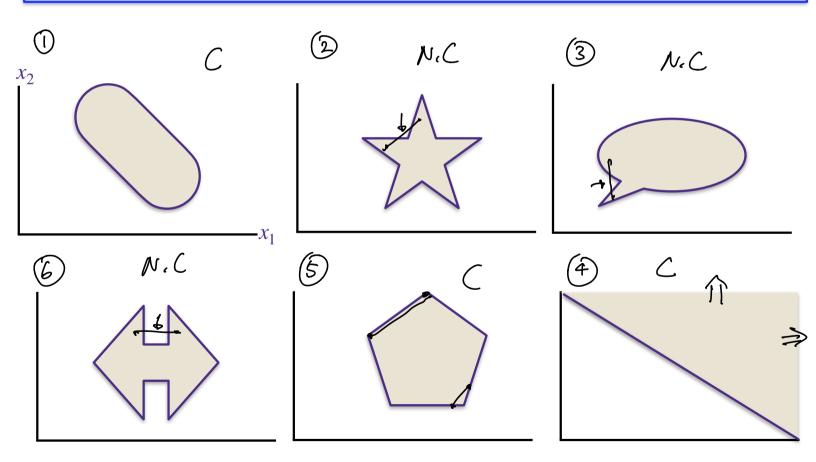
What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$



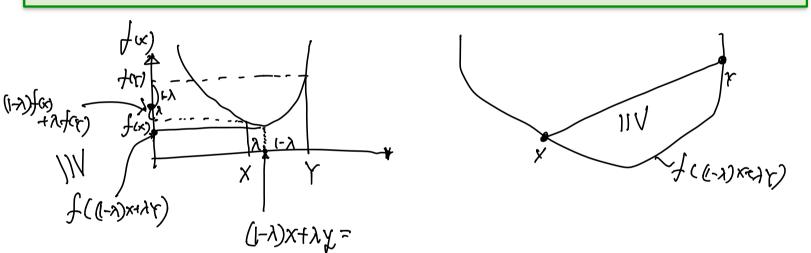
What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$



What is a convex function?

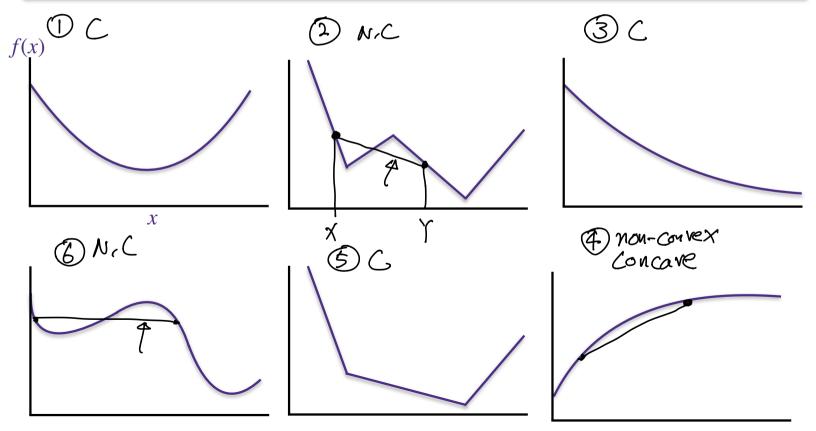
A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$



What is a convex function?

min f(w) max f(w)
w & w & Concave

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

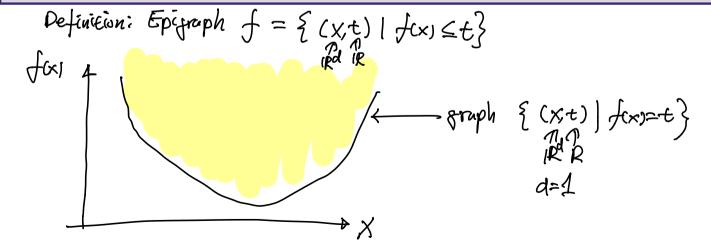


Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

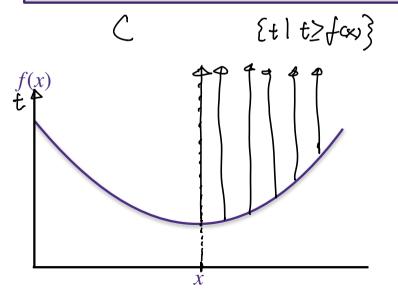


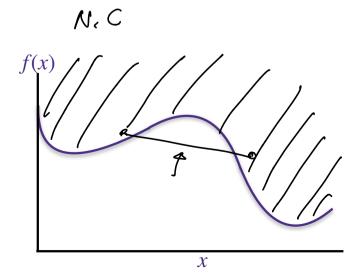
Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex



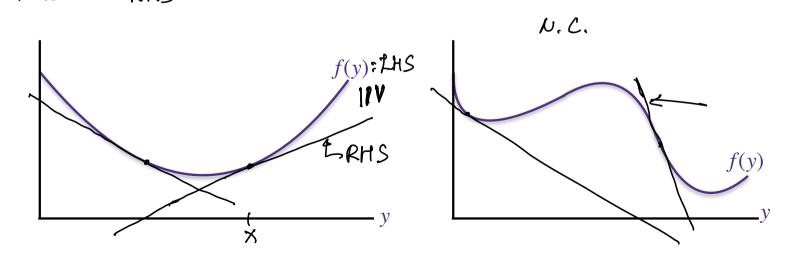


More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

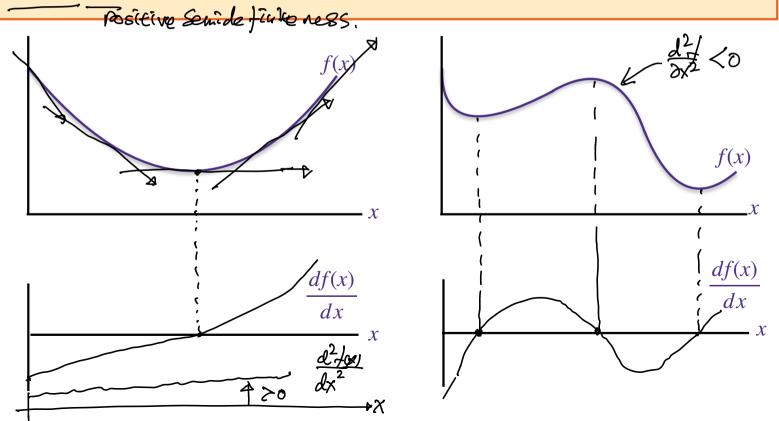
A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is <u>differentiable everywhere</u> is convex if $f(y) \geq f(x) + \nabla f(x)^\top (y-x)$ for all $x,y \in dom(f)$



More definitions of convexity

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is <u>twice-differentiable everywhere</u> is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$



More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

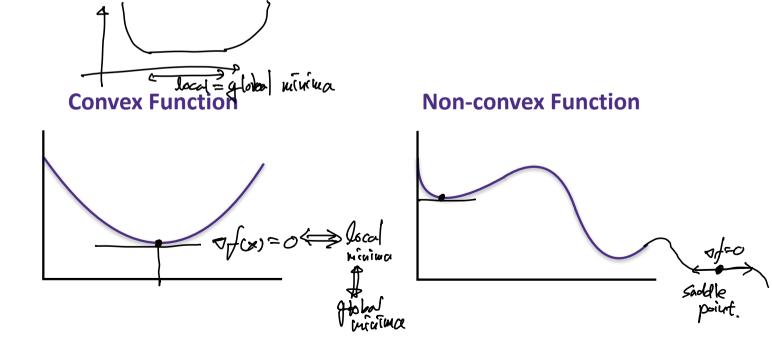
A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^{\top} (y-x)$ for all $x, y \in dom(f)$

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

Why do we care about convexity?

Convex functions

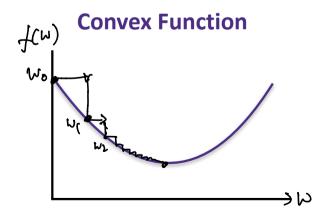
- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)



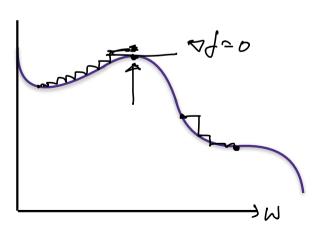
Gradient Descent on $\min f(w)$

Initialize: $w_0 = 0$ for $t = 1, 2, \ldots$ $w_{t+1} = w_t - \eta \nabla f(w_t)$

W

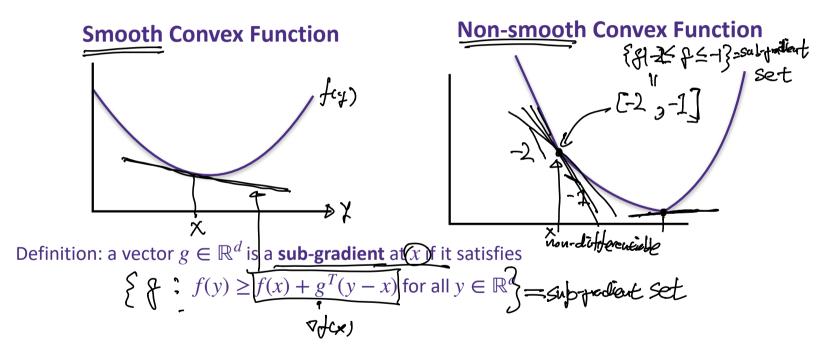


Non-convex Function



Sub-Gradient

Definition: a function is **non-smooth** if it is not differentiable everywhere



for smooth convex functions, the minimum is achieved at points where gradient is zero for non-smooth convex functions, the minimum is achieved at points where <u>sub-gradient set includes the</u> zero vector

Sub-Gradient Descent

Gradient Desert conveyes with fixely on smooth f

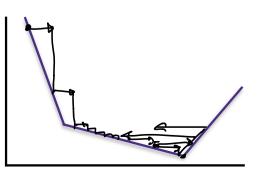
Subgradient Descent on non-smooth of.

Trusted of last Wt, You keep best with t Initialize: $w_0 = 0$ for t = 1, 2, ...

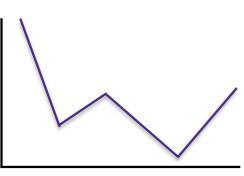
Find any g_t such that $f(y) \ge f(w_t) + g_t^{\top}(y - w_t)$

 $w_{t+1} = w_t - \eta g_t$ T Cunent parameter

Convex Function



Non-convex Function



Coordinate descent

Initialize: $w_0 = 0$ for t = 1, 2, ...Let $i_t = t \% d$ $w_{t+1}^{(i_t)} = w_t^{(i_t)} - \eta_t \frac{\partial f(w)}{\partial w^{(i_t)}} \Big|_{w=w_t}$

Machine Learning Problems

Given data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}$$

• Learning a model's parameters: $\sum_{i=1}^{n} \ell_i(w)$

Logistic Loss:
$$\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$$

Squared error Loss:
$$\ell_i(w) = (y_i - x_i^T w)^2$$

Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w = w_t}$$

Optimization summary

- You can always run gradient descent whether f is convex or not. But you only have guarantees if f is convex
- Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)