
Convexity

 



What is a convex set?

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]
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What is a convex function?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]ℝd
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More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)
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More definitions of convexity

A function f : Rd ! R that is twice-di↵erentiable everywhere is convex if
r2f(x) ⌫ 0 for all x 2 dom(f)
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Why do we care about convexity?

Convex functions 
- All local minima are global minima 
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function



Gradient Descent on min
w

f(w)

Convex Function

Non-convex Function

Initialize: w0 = 0

for t = 1, 2, . . .

wt+1 = wt � ⌘rf(wt)



Sub-Gradient

Non-smooth Convex Function

Definition: a function is non-smooth if it is not differentiable everywhere

Definition: a vector  is a sub-gradient at  if it satisfies  
                                        for all 

g ∈ ℝd x
f (y) ≥ f (x) + gT(y − x) y ∈ ℝd

Smooth Convex Function

for smooth convex functions, the 
minimum is achieved at points 
where gradient is zero 

for non-smooth convex functions, 
the minimum is achieved at points 
where sub-gradient set includes the 
zero vector



Sub-Gradient Descent

Initialize: w0 = 0

for t = 1, 2, . . .

Find any gt such that f(y) � f(wt) + g>t (y � wt)

wt+1 = wt � ⌘gt

Convex Function Non-convex Function



Coordinate descent

Initialize: w0 = 0

for t = 1, 2, . . .

Let it = t % n

w(it)
t+1 = w(it)

t � ⌘t
@f(w)

@w(it)

���
w=wt
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Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)
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wt+1 = wt � ⌘rw
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Gradient Descent:



Optimization summary

■ You can always run gradient descent whether f is 
convex or not. But you only have guarantees if f is 
convex

■ Many bells and whistles can be added onto gradient 
descent such as momentum and dimension-specific 
step-sizes (Nesterov, Adagrad, ADAM, etc.)


