Logistic Regression

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

Logistic Regression

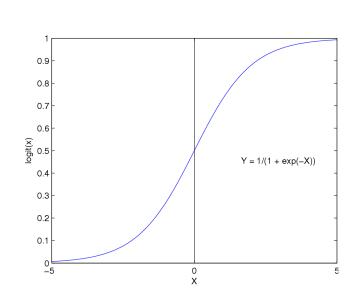
Actually classification, not regression:)

Learn $\mathbb{P}(Y=1|X=x)$ using $\sigma(w^Tx)$, for link function $\sigma=$

$$\frac{1}{1 + exp(-z)}$$

$$\mathbb{P}[Y = 1 | X = x, w] = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

$$\mathbb{P}[Y = 0|X = x, w] = 1 - \sigma(w^T x) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)}$$
$$= \frac{1}{1 + \exp(w^T x)}$$



Features can be discrete or continuous!

Sigmoid for binary classes

$$\mathbb{P}(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1|w, X) = 1 - \mathbb{P}(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} =$$

Sigmoid for binary classes

$$\mathbb{P}(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1|w, X) = 1 - \mathbb{P}(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = \exp(w_0 + \sum_k w_k X_k)$$

$$\log \frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = w_0 + \sum_k w_k X_k$$

Logistic Regression – a Linear classifier $\overline{1 + exp(-z)}$ $\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

Have a bunch of iid data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$$

$$P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}$$

$$P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

This is equivalent to:

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

So we can compute the maximum likelihood estimator:

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1} P(y_i|x_i, w)$$

Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n \quad x_i\in\mathbb{R}^d, \quad y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-u\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))$$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

(MLE for Gaussian noise)

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

©2018 Kevin Jamieson

Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n$ $x_i\in\mathbb{R}^d, \ y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-y\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)$$

What does J(w) look like? Is it convex?

- Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n$ $x_i\in\mathbb{R}^d,\ y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-u\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)$$

Good news: $J(\mathbf{w})$ is convex function of \mathbf{w} , no local optima problems

Bad news: no closed-form solution to maximize $J(\mathbf{w})$

Good news: convex functions easy to optimize

One other concern... overfitting.

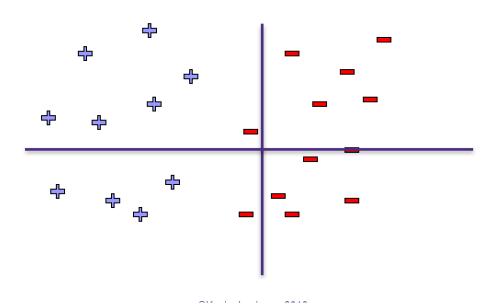
Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n$ $x_i \in \mathbb{R}^d$, $y_i \in \{-1,1\}$ $P(Y=y|x,w) = \frac{1}{1+\exp(-y\,w^Tx)}$ $\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1}^n P(y_i|x_i,w)$ $= \arg\min_{w} \sum_{i=1}^n \log(1+\exp(-y_i\,x_i^Tw))$

Does anyone see a situation when this minimization might overfit?

Overfitting and Linear Separability

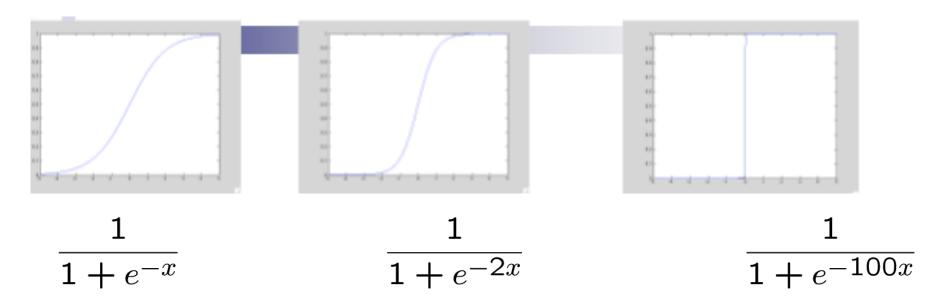
$$\arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_{i} x_{i}^{T} w))$$

When is this loss small?



Large parameters → **Overfitting**

When data is linearly separable, weights $\Rightarrow \infty$



Overfitting

Penalize high weights to prevent overfitting?

Regularized Conditional Log Likelihood

Add a penalty to avoid high weights/overfitting?:

$$\arg\min_{w,b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i (x_i^T w + b)) \right) + \lambda ||w||_2^2$$

Be sure to not regularize the offset b!