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Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples



Logistic Regression

Actually classification, not regression :)

Learn P(Y = 1|X = z) using o(w!'z), for link function o =

1

Logistic function(or Sigmoid):

1+ exp(—=2)

1
1 + exp(—w™x)

PY =1|X = z,w] = U(wT ) =

exp(—w!z)

1 + exp(—wTx) ,
B 1 = osf
1 +exp(wTx) 7

PY =0|X =z,w]=1— U(wT:c) =

Features can be discrete or continuous!



Sigmoid for binary classes

1
1+ exp(wo + ) _j wpXk)

X

1 + exp(wo + >, wipXk)

P(Y = 1w, X)

P(Y = 0w, X)



Sigmoid for binary classes

1

P(Y = X) =
( Ofee X) 1+ exp(wo + ) _p wiXk)

exp(wo + ), wpXk)

PY = 1llw,X) =1—-PY = 0w, X) = + exp(wo + 35, wiXr)

P(Y = 1w, X)
P(Y = 0w, X)

= exp(wo + Zkak)
k

IP(Y — 1‘w’ X) Linear Decision Rule!
— X
IP)(Y — ()‘w’ X) Wo + ;wk k

log



Logistic Regression —
a Linear classifier 1 "
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Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples



Loss function: Conditional Likelihood

Have a bunch of iid data: {(xi,yi) iy x5 € R%, y; € {-1,1}

1
1 + exp(wlz)

PY = —1|z,w) =

exp(w!x)

1 4 exp(w!'z)

PY =1|z,w) =

This is equivalent to:

1
PY =ylz,w) =

1 + exp(—y wlz)

So we can compute the maximum likelihood estimator:

mn
WM LE = arg mng P(yi|zi, w)
i—1



Loss function: Conditional Likelihood

Have a bunch of iid data: {(:Ez, yz) ?’:1 Ti € Rd, y; € {—1,1}
1

P(Y = =
( yl, w) 1+ exp(—ywTx)

mn
WM LE = arg mng P(yi|zi, w)
i1

= arg min Z log(1 + exp(—y; x; w))
i=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; ] w))

Squared error Loss: £;(w) = (y; — zl w)?

(MLE for Gaussian noise)



Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples
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Loss function: Conditional Likelihood

Have a bunch of iid data:  {(z;,4;)}i—; x; € RY, y,; € {—-1,1}
1

P(Y = =
( yle, w) 1+ exp(—ywTx)

n
Wy LE = arg mng Py, w)
i=1

= arg H?ljnz log(l + eXp(_yz' :C?UJ)) — J(UJ)
1=1

What does J(w) look like? Is it convex?



Loss function: Conditional Likelihood



Loss function: Conditional Likelihood

Have a bunch of iid data:  {(z;,4;)}i—; x; € RY, y,; € {—-1,1}
1
1+ exp(—yw!z)

PY =ylz,w) =
mn
Wy LE = arg max H Py, w)
1=1

= arg H?ljnz log(l + eXp(_yz' :C?UJ)) — J(w)
1=1

Good news: J(w) is convex function of w, no local optima problems
Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize



One other concern... overfitting.

Have a bunch of iid data: {(xz,yz) i1 T € RY, y, € {—1,1}
1

P(Y = =
( Yl,w) 1+ exp(—ywTx)

mn
WNLE = arg mng P(y;|x;, w)
i=1

= argmin'y " log(L + exp(—y; 7 w))
1=1

Does anyone see a situation when this minimization might overfit?



Overfitting and Linear Separability

n
argmin ) log(1 + exp(—y; z; w)) When is this loss small?
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Large parameters — Overfitting

When data is linearly separable, weights = oo

1 1
1+e?* 1+e 22

Overfitting

Penalize high weights to prevent overfitting?

14 6—10033



Regularized Conditional Log Likelihood

Add a penalty to avoid high weights/overfitting?:

argmleog 1+ exp(—y; (z; w+b))) + Al|w||5
1=1

Be sure to not regularize the offset b!



